The complete nucleotide sequence (155 844 bp) of tobacco (Nicotiana tabacum var. Bright Yellow 4) chloroplast DNA has been determined. It contains two copies of an identical 25 339 bp inverted repeat, which are separated by a 86 684 bp and a 18 482 bp single‐copy region. The genes for 4 different rRNAs, 30 different tRNAs, 39 different proteins and 11 other predicted protein coding genes have been located. Among them, 15 genes contain introns. Blot hybridization revealed that all rRNA and tRNA genes and 27 protein genes so far analysed are transcribed in the chloroplast and that primary transcripts of the split genes hitherto examined are spliced. Five sequences coding for proteins homologous to components of the respiratory‐chain NADH dehydrogenase from human mitochondria have been found. The 30 tRNAs predicted from their genes are sufficient to read all codons if the ‘two out of three’ and ‘U:N wobble’ mechanisms operate in the chloroplast. Two sequences which autonomously replicate in yeast have also been mapped. The sequence and expression analyses indicate both prokaryotic and eukaryotic features of the chloroplast genes.
In the copper oxide parent compounds of the high-transition-temperature superconductors the valence electrons are localized--one per copper site--by strong intra-atomic Coulomb repulsion. A symptom of this localization is antiferromagnetism, where the spins of localized electrons alternate between up and down. Superconductivity appears when mobile 'holes' are doped into this insulating state, and it coexists with antiferromagnetic fluctuations. In one approach to describing the coexistence, the holes are believed to self-organize into 'stripes' that alternate with antiferromagnetic (insulating) regions within copper oxide planes, which would necessitate an unconventional mechanism of superconductivity. There is an apparent problem with this picture, however: measurements of magnetic excitations in superconducting YBa2Cu3O6+x near optimum doping are incompatible with the naive expectations for a material with stripes. Here we report neutron scattering measurements on stripe-ordered La1.875Ba0.125CuO4. We show that the measured excitations are, surprisingly, quite similar to those in YBa2Cu3O6+x (refs 9, 10) (that is, the predicted spectrum of magnetic excitations is wrong). We find instead that the observed spectrum can be understood within a stripe model by taking account of quantum excitations. Our results support the concept that stripe correlations are essential to high-transition-temperature superconductivity.
Abstract. Integrin receptors play important roles in or-ganizing the actin-containing cytoskeleton and in signal transduction from the extracellular matrix. The initial steps in integrin function can be analyzed experimentally using beads coated with ligands or anti-integrin antibodies to trigger rapid focal transmembrane responses. A hierarchy of transmembrane actions was identified in this study. Simple integrin aggregation triggered localized transmembrane accumulation of 20 signal transduction molecules, including RhoA, Racl, Ras, Raf, MEK, ERK, and JNK. In contrast, out of eight cytoskeletal molecules tested, only tensin coaccumulated. Integrin aggregation alone was also sufficient to induce rapid activation of the JNK pathway, with kinetics of activation different from those of ERK. The tyrosine kinase inhibitors herbimycin A or genistein blocked both the accumulation of 19 out of 20 signal transduction molecules and JNK-and ERK-mediated signaling. Cytochalasin D had identical effects, whereas three other tyrosine kinase inhibitors did not. The sole exception among signaling molecules was the kinase pp125 FAK which continued to coaggregate with a5131 integrins even in the presence of these inhibitors. Tyrosine kinase inhibition also failed to block the ability of ligand occupancy plus integrin aggregation to trigger transmembrane accumulation of the three cytoskeletal molecules talin, et-actinin, and vinculin; these molecules accumulated even in the presence of cytochalasin D. However, it was necessary to fulfill all four conditions, i.e., integrin aggregation, integrin occupancy, tyrosine kinase activity, and actin cytoskeletal integrity, to achieve integrin-mediated focal accumulation of other cytoskeletal molecules including F-actin and paxillin. Integrins therefore mediate a transmembrane hierarchy of molecular responses.I NTEGRIN receptors for extracellular matrix molecules play central and complex roles in cell interactions. They mediate cell adhesion, migration, and invasion, but they also have a multitude of intracellular effects on the organization of the actin-containing cytoskeleton as well as roles in a variety of signaling processes (for reviews see Hynes, 1992;Sastry and Horwitz, 1993;Juliano and Haskill, 1993;Gumbiner, 1993;Pavalko and Otey, 1994;Schaller and Parsons, 1994;Shattil et al., 1994a;Clark and Brugge, 1995). A complex series of steps leads from initial integrin interactions with an extracellular ligand to transmembrane effects on the localization of cytoskeletal molecules or signaling molecules, to the activation of signaling pathways, and to eventual regulation of gene expression. Identifying distinct mechanisms of integrin responses to extracellular stimuli and patterns in the classes of responding molecules will be crucial for understanding how integrins function.
Single-dose baloxavir was without evident safety concerns, was superior to placebo in alleviating influenza symptoms, and was superior to both oseltamivir and placebo in reducing the viral load 1 day after initiation of the trial regimen in patients with uncomplicated influenza. Evidence for the development of decreased susceptibility to baloxavir after treatment was also observed. (Funded by Shionogi; JapicCTI number, 153090, and CAPSTONE-1 ClinicalTrials.gov number, NCT02954354 .).
Abstract. Integrins mediate cell adhesion, migration, and a variety of signal transduction events. These integrin actions can overlap or even synergize with those of growth factors. We examined for mechanisms of collaboration or synergy between integrins and growth factors involving MAP kinases, which regulate many cellular functions. In cooperation with integrins, the growth factors EGF, PDGF-BB, and basic FGF each produced a marked, transient activation of the ERK (extracellular signal-regulated kinase) class of MAP kinase, but only if the integrins were both aggregated and occupied by ligand. Transmembrane accumulation of total tyrosine-phosphorylated proteins, as well as nonsynergistic MAP kinase activation, could be induced by simple integrin aggregation, whereas enhanced transient accumulation of the EGF-receptor substrate eps8 required integrin aggregation and occupancy, as well as EGF treatment. Each type of growth factor receptor was itself induced to aggregate transiently by integrin ligandcoated beads in a process requiring both aggregation and occupancy of integrin receptors, but not the presence of growth factor ligand. Synergism was also observed between integrins and growth factors for triggering tyrosine phosphorylation of EGF, PDGF, and FGF receptors. This collaborative response also required both integrin aggregation and occupancy. These studies identify mechanisms in the signal transduction response to integrins and growth factors that require various combinations of integrin aggregation and ligands for integrin or growth factor receptors, providing opportunities for collaboration between these major regulatory systems. INTEGRINS mediate a wide variety of biological processes by functioning as receptors and transmembrane transducers in cell adhesion, migration, and signal transduction events (Hynes, 1992;Gumbiner, 1993;Clark and Brugge, 1995;Schwartz et al., 1995;Yamada and Miyamoto, 1995;Rosales et al., 1995;Richardson and Parsons, 1995;Parsons, 1996;Ruoslahti, 1996;Gumbiner, 1996). For example, interactions of ligands with integrins can stimulate a variety of signaling events including tyrosine phosphorylation (reviewed by Schwartz et al
The crystal structure of LnFeAsO 1Ày (Ln = La, Nd) has been studied by the powder neutron diffraction technique. The superconducting phase diagram of NdFeAsO 1Ày is established as a function of oxygen content which is determined by Rietveld refinement. The small As-Fe bond length suggests that As and Fe atoms are connected covalently. FeAs 4 -tetrahedrons transform toward a regular shape with increasing oxygen deficiency. Superconducting transition temperatures seem to attain maximum values for regular FeAs 4 -tetrahedrons.
We reveal experimentally waveguiding characteristics and group-velocity dispersion of line defects in photonic crystal slabs as a function of defect widths. The defects have waveguiding modes with two types of cutoff within the photonic band gap. Interference measurements show that they exhibit extraordinarily large group dispersion, and we found waveguiding modes whose traveling speed is 2 orders of magnitude slower than that in air. These characteristics can be tuned by controlling the defect width, and the results agree well with theoretical calculations, indicating that we can design light paths with made-to-order dispersion.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers