There is a broad consensus in literature that private households are significant contributors to the total amount of food waste in the EU. Thus, any strategy to meaningfully combat food wastage must put the end consumer in the center of prevention activities. This requires deeper insights into people's motivations to discard still edible food and knowledge about potential barriers to reduce wasting. This paper reports on results of an online survey among two European research centers in Italy (JRC/Ispra) and Germany (KIT/Karlsruhe). The focus of the survey was on households' behaviors (shopping, eating, and food preparation habits) and its influence on the generation of food waste. Furthermore, reasons for the disposal of food as well as measures and technologies most needed to prevent wastage were discussed. The results of the survey are analyzed, especially with regard to two questions: (1) Are there considerable differences between Ispra and Karlsruhe? (2) Are there considerable similarities or inconsistencies with the results of previous studies?
The reduction of food waste is seen as an important societal issue with considerable ethical, ecological and economic implications. The European Commission aims at cutting down food waste to one-half by 2020. However, implementing effective prevention measures requires knowledge of the reasons and the scale of food waste generation along the food supply chain. The available data basis for Europe is very heterogeneous and doubts about its reliability are legitimate. This mini-review gives an overview of available data on food waste generation in EU-27 and discusses their reliability against the results of own model calculations. These calculations are based on a methodology developed on behalf of the Food and Agriculture Organization of the United Nations and provide data on food waste generation for each of the EU-27 member states, broken down to the individual stages of the food chain and differentiated by product groups. The analysis shows that the results differ significantly, depending on the data sources chosen and the assumptions made. Further research is much needed in order to improve the data stock, which builds the basis for the monitoring and management of food waste.
In response to climate change, the limited availability of fossil fuels and the risks associated with nuclear energy, Germany's energy transition aims to achieve a sustainable, environmentally sound supply of energy services. A monitoring process was established by the Federal Government to ensure that the targets defined for the transformation will be reached. The indicator system developed for that purpose mainly focuses on "classical" environmental, economic and technological indicators for which statistical time series data and political targets are available. Important socio-technical aspects of the energy system and its transition, such as affordability, participation and acceptance, remain largely neglected. This paper aims to contribute to the discussion on indicators needed for political decision-making to appropriately address sustainability aspects of the energy system and its transition, as well as to contribute to improving existing indicator systems. Therefore, the sustainability rules of the Integrative Concept of Sustainable Development were translated into indicators based on an in-depth literature review. The resulting abundance of possible indicators was then reduced using selection criteria such as comprehensiveness, possibility to determine targets and availability of data. Finally, the indicator system was adjusted based on feedback of experts from different disciplines and stakeholder interviews in the particular investigation area of southwest Thuringia. Besides classical indicators related to techno-economic and environmental aspects, the finally developed indicator system includes new sustainability indicators related to the socio-technical interface of the energy system. Thus, it is considered suitable for assessing the sustainability of the Germany energy system and its transition in an integrative and comprehensive way. The indicator system is helpful to systematically identify strengths and weaknesses of the energy system and interdependencies and conflicts of goals between different sustainability aspects. All in all, we believe that applying the indicator system appropriately can support the development of resilient political strategies for a successful energy transition.
The results of model calculations carried out to identify and quantify the input pathways of trace elements into cement and concrete and to estimate the extent to which trace element concentrations in cement may change due to waste utilization are presented. As expected, primary raw materials represented the most important input pathway for trace elements into cement, but the contribution from wastes was not negligible. The use of waste led to a slight increase of the concentrations of cadmium, antimony and zinc in cement. For cobalt, lead and vanadium, this increase was less distinct and for all other trace elements considered, the effect of the use of wastes on trace element concentrations in cement could not be demonstrated clearly. The trace element content of concrete was governed by the aggregates for most elements considered. However, for arsenic, cadmium, lead and zinc, both cement and the additive coal fly ash contributed noticeably to the total trace element concentration in the concrete.
Background: The goal of the energy transition in Germany is to achieve a sustainable supply of energy. Providing advice for decision-makers to either continue the current transition pathway or implement strategic adjustments requires a comprehensive assessment tool. The authors have developed a Sustainability Indicator System (SIS) consisting of 45 indicators to assess if policy measures implemented so far by the Federal Government are appropriate and sufficient to achieve the energy policy targets and, furthermore, the sustainability targets defined for the German energy system. Methods: The assessment is carried out applying the SIS. For each indicator, a linear projection was calculated, based on the past 5 years for which data were available, assuming that this trend will continue in a linear way until 2020. Then, the projected value for 2020 resulting from the trend was compared to the political or defined target for 2020. The assessment was based on distance-to-target considerations, i.e. to which degree the set, proposed or desirable target will be met within the framework of the existing energy policy. The results are illustrated using a traffic light colour code. Indicators with less than 5 years of data available were given a white traffic light since no assessment was possible. Results: A profound view on eight selected sustainability indicators that are not already part of the German monitoring process 'Energy of the Future' and a comprehensive overview on the sustainability assessment of the German energy system are presented. The results show that 24% of the assessed indicators are rated with a green, 7% with a yellow, 45% with a red and 24% with a white traffic light. This means that it cannot be expected that the sustainability targets defined for the German energy system will be achieved by 2020 without substantial modifications of political strategies and measures implemented so far. Conclusions: The developed SIS is a comprehensive decision support and navigation tool with respect to long-term governance of the German energy transition. It aims to assess and monitor the overall sustainability performance of the energy system, to identify unsustainable energy strategies and measures as well as trade-offs and to evaluate the achievements or failures of policies regarding the energy transition. It can also be adapted to assess the sustainability of the energy systems in other European countries.
Background: Due to a rapid urbanization process in the Metropolitan Region of Santiago de Chile (MRS), the amount of municipal solid waste (MSW) generated has increased considerably within the last years. MSW should be managed properly in order to achieve sustainable development. The purpose of this study is to analyze MSW management in MRS on the basis of three different explorative scenarios for the year 2030.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.