Prostate-specific membrane antigen (PSMA) is expressed in normal human prostate epithelium and is highly upregulated in prostate cancer. We previously reported a series of novel small molecule inhibitors targeting PSMA. Two compounds, MIP-1072, (S)-2-(3-((S)-1-carboxy-5-(4–iodobenzylamino)pentyl)ureido)pentanedioic acid and MIP-1095, (S)-2-(3-((S)-1-carboxy-5-(3-(4-iodophenyl)ureido)pentyl)ureido)pentanedioic acid, were selected for further evaluation. MIP-1072 and MIP-1095 potently inhibited the glutamate carboxypeptidase activity of PSMA (Ki = 4.6 ± 1.6 and 0.24 ± 0.14 nM, respectively), and when radiolabeled with 123I exhibited high affinity for PSMA on human prostate cancer LNCaP cells (Kd = 3.8 ± 1.3 and 0.81 ± 0.39 nM, respectively). The association of [123I]MIP-1072 and [123I]MIP-1095 with PSMA was specific; there was no binding to human prostate cancer PC3 cells, which lack PSMA, and binding was abolished by co-incubation with a structurally unrelated NAALADase inhibitor, 2-(phosphonomethyl)pentanedioic acid (PMPA). [123I]MIP-1072 and [123I]MIP-1095 internalized into LNCaP cells at 37 °C. Tissue distribution studies in mice demonstrated 17.3 ± 6.3 (at 1 hr) and 34.3 ± 12.7 (at 4 hr) % injected dose per gram of tissue, for [123I]MIP-1072 and [123I]MIP-1095, respectively. [123I]MIP-1095 exhibited greater tumor uptake but slower washout from blood and non-target tissues compared to [123I]MIP-1072. Specific binding to PSMA in vivo was demonstrated by competition with PMPA in LNCaP xenografts, and the absence of uptake in PC3 xenografts. The uptake of [123I]MIP-1072 and [123I]MIP-1095 in tumor bearing mice was corroborated by SPECT/CT imaging. PSMA-specific radiopharmaceuticals should provide a novel molecular targeting option for the detection and staging of prostate cancer.
Prostate specific membrane antigen (PSMA) is a validated molecular marker for prostate cancer. A series of glutamate-urea (Glu-urea-X) heterodimeric inhibitors of PSMA were designed and synthesized where X = epsilon-N-(o-I, m-I, p-I, p-Br, o-Cl, m-Cl, p-Cl, p-F, H)-benzyl-Lys and epsilon-(p-I, p-Br, p-Cl, p-F, H)-phenylureido-Lys. The affinities for PSMA were determined by screening in a competitive binding assay. PSMA binding of the benzyllysine series was significantly affected by the nature of the halogen substituent (IC(50) values, Cl < I = Br << F = H) and the ring position of the halogen atom (IC(50) values, p-I < o-I << m-I). The halogen atom had little affect on the binding affinity in the para substituted phenylureido-Lys series. Two lead iodine compounds were radiolabeled with (123)I and (131)I and demonstrated specific PSMA binding on human prostate cancer cells, warranting evaluation as radioligands for the detection, staging, and monitoring of prostate cancer.
A bifunctional ligand that is capable of forming Re and 99mTc complexes as complementary fluorescent and radioactive probes was developed. The tridentate bis(quinoline) amine ligand, which is referred to as the SAACQ system, was prepared in a single step from Fmoc protected lysine in high yield. Reaction of the SAACQ ligand with [Re(CO)3Br3]2- resulted in the formation of the SAACQ-(Re(CO)3)+complex which exhibits favorable fluorescence properties including a long lifetime and a large Stoke's shift. Because the SAACQ ligand is derived from an amino acid, it can readily be linked to or incorporated within peptides as a means of targeting the probe to specific receptors. To demonstrate this feature, the SAACQ ligand and the SAACQ-Re complex were incorporated into fMLFG, a peptide that binds to the formyl peptide receptor (FPR). Uptake of the fMLF[(SAACQ-Re(CO)3)+]G conjugate into human leukocytes in vitro was visualized by fluorescence microscopy, and the observed distribution of the peptide was similar to that of a well-established fluorescent FPR probe. The corresponding Tc complex, fMLF[(SAACQ-99mTc(CO)3)+]G, was prepared in excellent yield from [99mTc(CO)3(OH2)3]+, which affords the opportunity to correlate the results of the microscopy experiments with in vivo radioimaging studies because the probes are isostructural.
Radiolabeled biomolecules can be used to visualize a variety of diseases through interaction with specific cell receptors. A key step is the introduction of a molecular entity that allows facile labeling with the medically useful radionuclide (99m)Tc without significant alteration of the structure and function of the biomolecule. One strategy focuses on the design of single amino acid chelates (SAACs), novel bifunctional chelators constructed from derivatized amino acids or amino acid analogues. The chelating terminus of the SAAC has been designed for effective coordination to the {(99m)Tc(CO)(3)}(+) core, while the other terminus allows incorporation into any position along a peptide sequence or into a variety of biomolecules. In applications to peptidic materials, the approach affords significant flexibility in the choice of donors for (99m)Tc coordination combined with the considerable advantages of routine solid phase synthetic techniques. The methodology allows libraries of peptide-based (99m)Tc(i) and (186,188)Re(i) radiopharmaceuticals to prepared using conventional automated peptides synthesis. Other biomolecules, including nucleosides, carbohydrates, folic acid and vitamin B12 are also readily modified using analogous methods. The approach also allows the preparation of isostructural (99m)Tc and Re complexes for the correlation of in vivo and in vitro imaging studies.
This phase 1 study was performed to determine the pharmacokinetics and ability to visualize prostate cancer in bone, soft-tissue, and the prostate gland using 123 I-MIP-1072 and 123 I-MIP-1095, novel radiolabeled small molecules targeting prostate-specific membrane antigen. Methods: Seven patients with a documented history of prostate cancer by histopathology or radiologic evidence of metastatic disease were intravenously administered 370 MBq (10 mCi) of 123 I-MIP-1072 and 123 I-MIP-1095 2 wk apart in a crossover trial design. 123 I-MIP-1072 was also studied in 6 healthy volunteers. Whole-body planar and SPECT/CT imaging was performed and pharmacokinetics studied over 2-3 d. Target-to-background ratios were calculated. Absorbed radiation doses were estimated using OLINDA/EXM. Results: 123 I-MIP-1072 and 123 I-MIP-1095 visualized lesions in soft tissue, bone, and the prostate gland within 0.5-1 h after injection, with retention beyond 48 h. Target-to-background ratios from planar images averaged 2:1 at 1 h, 3:1 at 4-24 h, and greater than 10:1 at 4 and 24 h for SPECT/CT. Both agents cleared the blood in a biphasic manner; clearance of 123 I-MIP-1072 was approximately 5 times faster. 123 I-MIP-1072 was excreted in the urine, with 54% and 74% present by 24 and 72 h, respectively. In contrast, only 7% and 20% of 123 I-MIP-1095 had been renally excreted by 24 and 72 h, respectively. Estimated absorbed radiation doses were 0.054 versus 0.110 mGy/MBq for the kidneys and 0.024 versus 0.058 mGy/MBq for the liver, for 123 I-MIP-1072 and 123 I-MIP-1095, respectively. Conclusion: 123 I-MIP-1072 and 123 I-MIP-1095 detect lesions in soft tissue, bone, and the prostate gland at as early as 1-4 h. These novel radiolabeled small molecules have excellent pharmacokinetic and pharmacodynamic profiles and warrant further development as diagnostic and potentially when labeled with 131 I therapeutic radiopharmaceuticals.
Olanzapine and other atypical antipsychotics cause metabolic side effects leading to obesity and diabetes; while these continue to be an important public health concern, their underlying mechanisms remain elusive. Therefore, an animal model of these side effects was developed in male Sprague-Dawley rats. Chronic administration of olanzapine elevated fasting glucose, impaired glucose and insulin tolerance, increased fat mass but, in contrast to female rats, did not increase body weight or food intake. Acute studies were conducted to delineate the mechanisms responsible for these effects. Olanzapine markedly decreased physical activity without a compensatory decline in food intake. It also acutely elevated fasting glucose, and worsened oral glucose and insulin tolerance, suggesting these effects are adiposity independent. Hyperinsulinemic-euglycemic clamp studies measuring 14C-2-deoxyglucose (14C-DOG) uptake revealed tissue-specific insulin resistance. Insulin sensitivity was impaired in skeletal muscle, but either unchanged or increased in adipose tissue depots. Consistent with the olanzapine-induced hyperglycemia there was a tendency for increased 14C-DOG uptake into fat depots of fed rats and, surprisingly, free fatty acid (FFA) uptake into fat depots was elevated approximately 2-fold. The increased glucose and FFA uptake into adipose tissue was coupled with increased adipose tissue lipogenesis. Finally, olanzapine lowered fasting plasma FFA and whereas it had no effect on isoproterenol-stimulated rises in plasma glucose, it blunted isoproterenol-stimulated in vivo lipolysis in fed rats. Collectively, these results suggest olanzapine exerts several metabolic effects that together favor increased accumulation of fuel into adipose tissue, thereby increasing adiposity.
The reactions of a series of potentially tridentate ligands, derived from single amino acids or amino acid analogues, with [NEt(4)](2)[ReBr(3)(CO)(3)] have been investigated. The model compounds [Re(CO)(3)Br[(2-pyridylmethyl)NH(2)]] (1) and [Re(CO)(3)[(2-pyridylmethyl)(2)NH]]Br (2) were also prepared and structurally characterized. With ligands possessing two pyridyl appendages, (2-pyridylmethyl)(2)NX (X = -CH(2)CO(2)H, -CH(2)CO(2)Et, -CH(2)CH(2)CO(2)H, -CH(2)CH(2)CO(2)Et, -CH(2)CH(2)CH(2)CH(2)CH(NHCO(2)(t)Bu)CO(2)H), complexes of the type [Re(CO)(3)(ligand)]Br (3-6) were isolated. All possess the fac-[Re(CO)(3)N(3)] coordination geometry in the cationic molecular unit. Similarly, the ligands with the imidazolyl arms (2-pyridylmethyl)[2-(1-methylimidazolyl)methyl]NCH(2)CO(2)Et and [2-(1-methylimidazolyl)methyl](2)NCH(2)CO(2)Et, complexes 7 and 8 of the same [Re(CO)(3)(ligand)]Br type, were prepared. Replacement of one pyridyl arm with a thiophene group yielded the complex [Re(CO)(3)[(2-pyridylmethyl)N(CH(2)CO(2))(2-thiophenemethyl)]] (9), while additional substitution of X = -H for -CH(2)CO(2)H yielded [Re(CO)(3)Br[(2-pyridylmethyl)NH(2-thiophenemethyl)]] (10). In both 9 and 10, the thiophene is uncoordinated and pendant, and the derivatives display fac-[Re(CO)(3)N(2)O] and fac-[Re(CO)(3)N(2)Br] coordination geometries, respectively. Crystal data: C(9)H(8)BrN(2)O(3)Re (1), triclinic P1, a = 8.156(1) A, b = 12.077(1) A, c = 12.945(2) A, alpha = 92.183(3) degrees, beta = 107.848(3) degrees, gamma = 100.955(7) degrees, V = 1185.1(3) A, Z = 4; C(15)H(13)BrN(3)O(3)Re (2), tetragonal P4(1), a = 8.6095(3) A, c = 22.228(1) A, V = 1646.9(1) A(3), Z = 4; C(17)H(14)BrN(3)O(5)Re.CH(3)OH (3), monoclinic P2(1)/m, a = 7.4425(3) A, b = 9.7596(4) A, c = 14.0646(6) A, beta = 97.753(1) degrees, V = 1012.26(7) A(3), Z = 2; C(19)H(19)BrN(3)O(5)Re (4), tetragonal P42(1)c, a = 16.895(3) A, c = 15.042(3) A, V = 4293.7(13) A(3), Z = 8; C(18)H(20)BrN(4)O(5)Re.CH(3)OH.H(2)O (7), monoclinic P2(1)/c, a = 10.2816(4) A, b = 30.386(1) A, c = 14.5810(6) A, beta = 99.868(1) degrees, V = 4488.03(3) A(3), Z = 8; C(17)H(21)BrN(5)O(5)Re.0.5CH(2)Cl(2).0.5H(2)O (8), triclinic P1, a = 11.5363(6) A, b = 13.1898(6) A, c = 16.4933(8) A, alpha = 89.356(1) degrees, beta = 74.907(1) degrees, gamma = 76.216(1) degrees, V = 2349.8(2) A(3), Z = 4; C(16)H(13)N(2)O(5)ReS (9), monoclinic P2(1)/c, a = 17.2072(7) A, b = 8.5853(4) A, c = 11.5607(5) A, beta = 101.73(1) degrees, V = 1672.2(1) A(3), Z = 4; and C(14)H(12)N(2)O(3)BrReS (10), triclinic P1, a = 7.5585(3) A, b = 9.7713(4) A, c = 11.7103(4) A, alpha = 109.566(1) degrees, beta = 98.298(1) degrees, gamma = 100.925(1) degrees, V = 779.73(5) A(3), Z = 2.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers