In our quest to identify the progenitors of Type Ia supernovae (SNe Ia), we first update the nucleosynthesis yields for both near-Chandrasekhar-(Ch) and sub-Ch-mass white dwarfs (WDs) for a wide range of metallicities with our 2D hydrodynamical code and the latest nuclear reaction rates. We then include the yields in our galactic chemical evolution code to predict the evolution of elemental abundances in the solar neighborhood and dwarf spheroidal (dSph) galaxies Fornax, Sculptor, Sextans, and Carina. In the observations of the solar neighborhood stars, Mn shows an opposite trend to α elements, showing an increase toward higher metallicities, which is very well reproduced by the deflagration-detonation transition of Ch-mass WDs but never by double detonations of sub-Chmass WDs alone. The problem of Ch-mass SNe Ia was the Ni overproduction at high metallicities. However, we found that Ni yields of Ch-mass SNe Ia are much lower with the solar-scaled initial composition than in previous works, which keeps the predicted Ni abundance within the observational scatter. From the evolutionary trends of elemental abundances in the solar neighborhood, we conclude that the contribution of sub-Ch-mass SNe Ia to chemical enrichment is up to 25%. In dSph galaxies, however, larger enrichment from sub-Ch-mass SNe Ia than in the solar neighborhood may be required, which causes a decrease in [(Mg, Cr, Mn, Ni)/Fe] at lower metallicities. The observed high [Mn/Fe] ratios in Sculptor and Carina may also require additional enrichment from pure deflagrations, possibly as SNe Iax. Future observations of dSph stars will provide more stringent constraints on the progenitor systems and explosion mechanism of SNe Ia.
Mergers of two carbon-oxygen (CO) white dwarfs (WDs) have been considered to be progenitors of Type Ia supernovae (SNe Ia). Based on smoothed particle hydrodynamics (SPH) simulations, previous studies have claimed that mergers of CO WDs lead to SN Ia explosions either in the dynamical merger phase or the stationary rotating merger remnant phase. However, the mass range of CO WDs that lead to SNe Ia has notyet been clearly identified. In the present work, we perform systematic SPH merger simulations for the WD masses ranging from M 0.5 to M 1.1 with higher resolutions than the previous systematic surveys and examine whether or not carbon burning occurs dynamically or quiescently in each phase. We further study the possibility of SNe Ia explosions and estimate the mass range of CO WDs that lead to SNe Ia. We found that when both WDs are massive, i.e., in the mass range of ⩽ ⩽ and the total mass exceeds M 1.38 , they can finally explode in the stationary rotating merger remnant phase. We estimate the contribution of CO WD mergers to the entire SN Ia rate in our galaxy to be of 9% . Thus, it might be difficult to explain all galactic SNe Ia with CO WD mergers.
Two recently discovered very luminous supernovae (SNe) present stimulating cases to explore the extents of the available theoretical models. SN2011kl represents the first detection of a supernova explosion associated with an ultra-long duration gamma-ray burst. ASASSN-15lh was even claimed as the most luminous SN ever discovered, challenging the scenarios so far proposed for stellar explosions. Here we use our radiation hydrodynamics code in order to simulate magnetar-powered SNe. To avoid explicitly assuming neutron star properties, we adopt the magnetar luminosity and spin-down timescale as free parameters of the model. We find that the light curve (LC) of SN2011kl is consistent with a magnetar power source, as previously proposed, but we note that some amount of 56 Ni ( M 0.08 ) is necessary to explain the low contrast between the LC peak and tail. For the case of ASASSN15lh, we find physically plausible magnetar parameters that reproduce the overall shape of the LC provided the progenitor mass is relatively large (an ejecta mass of M 6 » ). The ejecta hydrodynamics of this event is dominated by the magnetar input, while the effect is more moderate for SN2011kl. We conclude that a magnetar model may be used for the interpretation of these events and that the hydrodynamical modeling is necessary to derive the properties of powerful magnetars and their progenitors.
Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope observations of the SN site ∼740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, implying that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will require further observations to disentangle the contribution of a much fainter SN and its environment.
Hubble Space Telescope observations of the site of the supernova (SN) SN 2008ax obtained in 2011 and 2013 reveal that the possible progenitor object detected in pre-explosion images was in fact multiple. Four point sources are resolved in the new, higher-resolution images. We identify one of the sources with the fading SN. The other three objects are consistent with single supergiant stars. We conclude that their light contaminated the previously identified progenitor candidate. After subtraction of these stars, the progenitor appears to be significantly fainter and bluer than previously measured. Post-explosion photometry at the SN location indicates that the progenitor object has disappeared. If single, the progenitor is compatible with a supergiant star of B to mid-A spectral type, while a Wolf-Rayet (W-R) star would be too luminous in the ultraviolet to account for the observations. Moreover, our hydrodynamical modeling shows that the pre-explosion mass was 4-5 M e and the radius was 30-50 R e , which is incompatible with a W-R progenitor. We present a possible interacting binary progenitor computed with our evolutionary models that reproduces all the observational evidence. A companion star as luminous as an O9-B0 main-sequence star may have remained after the explosion.
High-velocity features in Type Ia supernova spectra provide a way to probe the outer layers of these explosions. The maximum-light spectra of the unique Type Ia supernova 2000cx exhibit interesting Ca II features with high-velocity components. The infrared triplet absorption is quadruply notched, while the H&K absorption is wide and flat. Stimulated by a three-dimensional interpretation of similar Ca II features in another Type Ia supernova (SN 2001el, Kasen et al. 2003, we present alternative spherically symmetric and three-dimensional ejecta models to fit the high-velocity (v > 16, 000 km s −1 ) Ca II features of SN 2000cx. We also present simple estimates of the high-velocity ejecta mass for a few trial compositions and discuss their implications for explosion modelling. Subject headings: supernovae: individual (SN 2000cx) -radiative transfer
A theoretical light curve is constructed for the quiescent phase of the recurrent nova U Scorpii in order to resolve the existing distance discrepancy between the outbursts (d approximately 6 kpc) and the quiescences (d approximately 14 kpc). Our U Sco model consists of a very massive white dwarf (WD), an accretion disk (ACDK) with a flaring-up rim, and a lobe-filling, slightly evolved, main-sequence star (MS). The model properly includes an accretion luminosity of the WD, a viscous luminosity of the ACDK, and a reflection effect of the MS and the ACDK irradiated by the WD photosphere. The B light curve is well reproduced by a model of 1.37 M middle dot in circle WD + 1.5 M middle dot in circle MS (0.8-2.0 M middle dot in circle MS is acceptable) with an ACDK having a flaring-up rim and the inclination angle of the orbit i approximately 80&j0;. The calculated color is rather blue (B-V approximately 0.0) for a suggested mass accretion rate of 2.5x10-7 M middle dot in circle yr-1, thus indicating a large color excess of E(B-V) approximately 0.56 with the observational color of B-V=0.56 in quiescence. Such a large color excess corresponds to an absorption of AV approximately 1.8 and AB approximately 2.3, which reduces the distance to 6-8 kpc. This is in good agreement with the distance estimation of 4-6 kpc for the latest outburst. Such a large intrinsic absorption is very consistent with the recently detected period change of U Sco, which is indicating a mass outflow of approximately 3x10-7 M middle dot in circle yr-1 through the outer Lagrangian points in quiescence.
In this paper, we report on our analysis using Hubble Space Telescope astrometry and Keck-I HIRES spectroscopy of the central six stars of Tycho's supernova remnant (SN 1572). With these data, we measured the proper motions, radial velocities, rotational velocities, and chemical abundances of these objects. Regarding the chemical abundances, we do not confirm the unusually high [Ni/Fe] ratio previously reported for Tycho-G. Rather, we find that for all metrics in all stars, none exhibit the characteristics expected from traditional SN Ia single-degenerate-scenario calculations. The only possible exception is Tycho-B, a rare, metal-poor A-type star; however, we are unable to find a suitable scenario for it. Thus, we suggest that SN 1572 cannot be explained by the standard single-degenerate model.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers