Chronic myeloid leukemia (CML)-study IV was designed to explore whether treatment with imatinib (IM) at 400 mg/day (n=400) could be optimized by doubling the dose (n=420), adding interferon (IFN) (n=430) or cytarabine (n=158) or using IM after IFN-failure (n=128). From July 2002 to March 2012, 1551 newly diagnosed patients in chronic phase were randomized into a 5-arm study. The study was powered to detect a survival difference of 5% at 5 years. After a median observation time of 9.5 years, 10-year overall survival was 82%, 10-year progression-free survival was 80% and 10-year relative survival was 92%. Survival between IM400 mg and any experimental arm was not different. In a multivariate analysis, risk group, major-route chromosomal aberrations, comorbidities, smoking and treatment center (academic vs other) influenced survival significantly, but not any form of treatment optimization. Patients reaching the molecular response milestones at 3, 6 and 12 months had a significant survival advantage. For responders, monotherapy with IM400 mg provides a close to normal life expectancy independent of the time to response. Survival is more determined by patients’ and disease factors than by initial treatment selection. Although improvements are also needed for refractory disease, more life-time can currently be gained by carefully addressing non-CML determinants of survival.
Blast crisis is one of the remaining challenges in chronic myeloid leukemia (CML). Whether additional chromosomal abnormalities (ACAs) enable an earlier recognition of imminent blastic proliferation and a timelier change of treatment is unknown. One thousand five hundred and ten imatinib-treated patients with Philadelphia-chromosome-positive (Ph+) CML randomized in CML-study IV were analyzed for ACA/Ph+ and blast increase. By impact on survival, ACAs were grouped into high risk (+8, +Ph, i(17q), +17, +19, +21, 3q26.2, 11q23, −7/7q abnormalities; complex) and low risk (all other). The presence of high- and low-risk ACAs was linked to six cohorts with different blast levels (1%, 5%, 10%, 15%, 20%, and 30%) in a Cox model. One hundred and twenty-three patients displayed ACA/Ph+ (8.1%), 91 were high risk. At low blast levels (1–15%), high-risk ACA showed an increased hazard to die compared to no ACA (ratios: 3.65 in blood; 6.12 in marrow) in contrast to low-risk ACA. No effect was observed at blast levels of 20–30%. Sixty-three patients with high-risk ACA (69%) died (n = 37) or were alive after progression or progression-related transplantation (n = 26). High-risk ACA at low blast counts identify end-phase CML earlier than current diagnostic systems. Mortality was lower with earlier treatment. Cytogenetic monitoring is indicated when signs of progression surface or response to therapy is unsatisfactory.
Major molecular remission (MMR) is an important therapy goal in chronic myeloid leukemia (CML). So far, MMR is not a failure criterion according to ELN management recommendation leading to uncertainties when to change therapy in CML patients not reaching MMR after 12 months. At monthly landmarks, for different molecular remission status Hazard ratios (HR) were estimated for patients registered to CML study IV who were divided in a learning and a validation sample. The minimum HR for MMR was found at 2.5 years with 0.28 (compared to patients without remission). In the validation sample, a significant advantage for progression-free survival (PFS) for patients in MMR could be detected (p-value 0.007). The optimal time to predict PFS in patients with MMR could be validated in an independent sample at 2.5 years. With our model we provide a suggestion when to define lack of MMR as therapy failure and thus treatment change should be considered. The optimal response time for 1% BCR-ABL at about 12–15 months was confirmed and for deep molecular remission no specific time point was detected. Nevertheless, it was demonstrated that the earlier the MMR is achieved the higher is the chance to attain deep molecular response later.
Background. The end phase or metamorphosis is one of the remaining challenges of chronic myeloid leukemia (CML) management. Blast crisis (BC) is a late marker. Earlier diagnosis may improve outcome. The detection of additional chromosomal abnormalities (ACA) at low blast levels might allow earlier treatment when outcome is better. Methods. We made use of 1536 Ph+CML-patients in chronic phase followed in the randomized CML study IV (Hehlmann et al, Leukemia 2017) for a median of 8.6 years. 1510 cytogenetically evaluable patients were analyzed for ACA and blast increase (Flow chart). According to impact on survival ACA were grouped into high-risk (+ 8; +Ph; i(17q); +17; +19 +21; 3q26; 11q23; -7; complex) and low-risk (all other). Prognosis with +8 alone was clearly better than with +8 accompanied by further abnormalities, but still worse than with low-risk ACA. +8 alone was therefore included in the high-risk group. The presence of high- and low-risk ACA was linked to 6 thresholds of blast increase (1%, 5%, 10%, 15%, 20%, and 30%) in a Cox proportional hazards model. Results. 139 patients (9.2%) displayed ACA at any time before BC diagnosis, 88 (5.8%) had high-risk and 51 (3.4%) low-risk ACA. ACA emerged after a median of 17 (0-133) months. 79 patients developed BC. 43 (61%) of 71 cytogenetically evaluable patients with BC had high-risk ACA. 3-year survival after emergence of high-risk ACA was 48%, after emergence of low-risk ACA 92%. At low blast levels (1-15%), high-risk ACA showed an increased hazard to die (ratios: 3.66 in blood; 6.84 in marrow) compared to no ACA in contrast to low-risk ACA. This effect was not observed anymore at blast increases to 20-30% (Figure). 38 patients with high-risk ACA died, 36 with known causes of death which were almost exclusively BC (n=26, 72%) and progression-related transplantation (n=8, 22%). Only 2 patients died of CML-unrelated causes. Conclusions. High-risk ACA herald death by BC already at low blast levels and may help to define CML end phase in a subgroup of patients at an earlier time than is possible with current blast thresholds. Cytogenetic monitoring is indicated when signs of progression surface and response to therapy is unsatisfactory. More intensive therapy may be indicated at emergence of high-risk ACA. Disclosures Hehlmann: Novartis: Research Funding. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Fabarius:Novartis: Research Funding. Krause:Siemens: Research Funding; Takeda: Honoraria; MSD: Honoraria; Gilead: Other: travel; Celgene Corporation: Other: Travel. Baerlocher:Novartis: Research Funding. Burchert:Novartis: Research Funding. Brümmendorf:Novartis: Consultancy, Research Funding; Janssen: Consultancy; Merck: Consultancy; Ariad: Consultancy; Pfizer: Consultancy, Research Funding; University Hospital of the RWTH Aachen: Employment. Hochhaus:Pfizer: Research Funding; Novartis: Research Funding; BMS: Research Funding; Incyte: Research Funding; MSD: Research Funding. Saussele:BMS: Honoraria, Research Funding; Incyte: Honoraria, Research Funding; Pfizer: Honoraria; Novartis: Honoraria, Research Funding. Baccarani:Novartis: Consultancy, Speakers Bureau; Incyte: Consultancy, Speakers Bureau; Takeda: Consultancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.