To detect potential Pleistocene refugia and colonization routes along the Atlantic coast, we analysed amplified fragment length polymorphisms (AFLPs) in 140 individuals from 14 populations of Hypochaeris salzmanniana (Asteraceae), an annual species endemic to the southwestern European and northwestern African coastal areas. Samples covered the total distributional range of the species, with eight populations in southwestern Spain and six populations in northwestern Morocco. Using nine primer combinations, we obtained 546 fragments in H. salzmanniana and its sister species H. arachnoidea of which 487 (89.2%) were polymorphic. The neighbour-joining tree shows that the populations south of the Loukos river in Morocco are clearly differentiated, having more polymorphic, private, and rare fragments, and higher genetic diversity, than all the other populations. The southernmost populations in Morocco, south of the river Sebou, form a large panmictic population. They are probably the oldest populations that have been relatively unaffected by stochastic processes resulting from Pleistocene glaciations. Northward migration of populations during this period may have resulted in loss of genetic diversity in specific regions, perhaps due to bottlenecks caused by rise in sea level during interglacial periods, and, in some cases, by changes in the breeding system.
Hypochaeris palustris (Phil.) De Wild. is a species growing in the southern Andean chain. To elucidate potential Pleistocene refugia and recolonization routes in the southern Andes, we analysed amplified fragment length polymorphisms (AFLPs) in 206 individuals in 21 populations of H. palustris from the coastal Cordillera, the central, northern, and eastern ranges of the southern Andes, and Patagonia. Populations from the coastal Cordillera harboured more private AFLP fragments, and exhibited a higher frequency of polymorphic fragments as well as higher Shannon diversity than all other areas investigated. The comparison among pooled AFLP profiles of each region revealed that the central Andean ranges shared most fragments with populations from the margins of the distributional area in the Andes, in the N, E, and S (Patagonia). Phenetic analysis indicated close relationships among populations of the central ranges. Populations of the coastal Cordillera were shown to be highly differentiated from the Andean populations. It is very likely therefore that (1) H. palustris recolonized the central ranges of the southern Andes from nearby refugia, possibly unglaciated areas N, E, and/or S of its present distributional area; (2) the postglacial spread of H. palustris in the central ranges of the southern Andes occurred rapidly; and (3) the coastal Cordillera served as a refugium for H. palustris, but these populations did not contribute to the recolonization of the central Andean ranges.
Early evolution of Hypochaeris in South America was characterized by considerable karyotype differentiation resulting from independent derivations from an ancestral karyotype. There was marked diversification with respect to the position and evolution of the 35S rDNA locus on chromosome 3, probably involving inversions and/or transpositions, and on chromosome 2 (rarely 3) concerning inactivation and loss. Among these different karyotype assemblages, the apargioides group and its derivatives constitute by far the majority of species.
Understanding the genetics of colonizing populations has been, and continues to remain, an important focus in evolutionary biology. Different theoretical models predict varying levels of genetic variation in colonizing populations depending upon strength of founder effect, gene flow and rate of population growth and immigration following colonization. We analyse overall genetic variation using amplified fragment length polymorphism markers in colonizing populations of Hypochaeris tenuifolia (Asteraceae) in the southern Andes. Volcán Lonquimay newly erupted on 25 December 1988, producing a side cone, La Navidad, and sent lava and ash into surrounding areas. Many domesticated animals (estimated at 10 000) and many natural plant populations were destroyed. Into this new open habitat have come immigrant populations of several angiosperm species, most conspicuously H. tenuifolia that forms leaf rosettes with flowering scapes to 15 cm and orange-yellow heads 1-2 cm in diameter. Genetic diversity in five founder populations in the eruption zone is compared with that from five nearby survivor populations, as well as with eight isolated northern and four southern populations from throughout the entire range of the species in Chile. Results from 477 individuals representing 447 different multilocus phenotypes, yielded 170 DNA fragments of which 144 (85%) were polymorphic. Genetic diversity within founder populations is neither lower than in survivor populations nor in isolated populations throughout the range of the species, but it is lower among founder populations than among other populations immediately and distantly outside the zone of disturbance. Closest genetic similarity occurs between founders and nearby survivor populations as well as those in adjacent southern regions.
We studied the relationships between self-incompatibility mechanisms and floral parameters in the genus Hypochaeris L. sect. Hypochaeris (consisting of H. glabra, H. radicata, H. arachnoidea, and H. salzmanniana). We assessed at intra- and interspecific levels (1) the self-incompatibility (SI) mechanism and its distribution among populations, (2) the relationship between SI and floral parameters, and (3) the relationship of SI to reproductive success. Hypochaeris salzmanniana is semi-incompatible, H. glabra is self-compatible, and H. arachnoidea and H. radicata are self-incompatible. Floral parameters differed among populations of H. salzmanniana: plants in self-compatible populations had fewer flowers per head, a smaller head diameter on the flower, and a shorter period of anthesis than self-incompatible populations. We also detected this pattern within a semi-compatible population of H. salzmanniana, and these differences were also found between species with different breeding mechanisms. Fruit to flower ratio in natural populations was generally high (>60%) in all species, regardless of breeding system. It is hypothesized that self-compatibility may have arisen through loss of allelic diversity at the S locus due to bottleneck events and genetic drift.
Nuclear internal transcribed spacer (ITS) regions and chloroplast trnL intron and trnL/trnF spacer and matK sequences were used from 86 accessions to assess relationships among 31 European and South American species of Hypochaeris plus 18 representatives of related genera of tribe Cichorieae. The ITS tree shows high resolution compared to that of the maternally inherited trnL intron, trnL/F spacer, and matK sequences. The ITS and the combined tree reveal clades that agree well with sections of the genus established previously on morphological and cytological grounds, except for H. robertia, which groups with Leontodon helveticus and L. autumnalis. Monophyly of species of Hypochaeris from South America is strongly supported by both ITS and the joint matrix of ITS, trnL, and matK data. European species lie basal to South American taxa, which suggests that species in South America evolved from a single introduction from European progenitors and not from H. robertia as suggested previously. Low levels of sequence divergence among South American taxa suggest a pattern of rapid speciation, in contrast to much greater divergence among European representatives. Different species of Leontodon form two different clades that are also supported by chromosome numbers and morphology. Both nuclear and chloroplast markers suggest that Helminthotheca, Leontodon, and Picris are closely related to each other as well as to Hypochaeris.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.