Abstract:An experimental study performed to investigate the effect of nanofluid forced convection heat transfer and fluid flow characteristic. Three types of nanofluids {γAl 2 O 3 , CuO and ZrO 2 -DIW} flow under laminar or turbulent condition in inner pipe. The shear thinning behavior of blood is more accurately modeled by non-Newtonian Blood Mimic Fluids BMF. Here heat transfer and friction factor correlations developed for nonreactive Newtonian and non-Newtonian BMF fluids of (water: glycerol: xanthan gums) and heparinized bovine blood. The results show that the BMF Nussult number (Nu b ) increased as increasing Graetz number, and as flow index (n) decreasing. Bovine blood gives the temperatures distribution similar to (BMF6) but with lower Nusselt number by (31.2%). The BMF friction factor increases with decreasing (n), but the Bovine blood gives higher friction factor as compared with BMF6 by (25.6%). It was observed that all nanofluids types showed higher heat transfer characteristics than the base fluid DIW. It was also noted that in the γAl 2 O 3 shows higher enhancement than the other by (82.4%) at (Re nf =12670) and (ɸ=1 vol.%). Comparisons present experimental results with previously reported results it gives good agreement.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers