The dimension-controlled synthesis of CdS nanocrystals in the strong quantum confinement regime is reported. Zero-, one-, and two-dimensional CdS nanocrystals are selectively synthesized via low-temperature reactions using alkylamines as surface-capping ligands. The shape of the nanocrystals is controlled systematically by using different amines and reaction conditions. The 2D nanoplates have a uniform thickness as low as 1.2 nm. Furthermore, their optical absorption and emission spectra show very narrow peaks indicating extremely uniform thickness. It is demonstrated that 2D nanoplates are generated by 2D assembly of CdS magic-sized clusters formed at the nucleation stage, and subsequent attachment of the clusters. The stability of magic-sized clusters in amine solvent strongly influences the final shapes of the nanocrystals. The thickness of the nanoplates increases in a stepwise manner while retaining their uniformity, similar to the growth behavior of inorganic clusters. The 2D CdS nanoplates are a new type of quantum well with novel nanoscale properties in the strong quantum confinement regime.
M2-type TAMs are increasingly implicated as a crucial factor promoting metastasis. Numerous cell types dictate monocyte differentiation into M2 TAMs via a complex network of cytokine-based communication. Elucidating critical pathways in this network can provide new targets for inhibiting metastasis. In this study, we focused on cancer cells, CAFs, and monocytes as a major node in this network. Monocyte cocultures with cancer-stimulated CAFs were used to investigate differentiation into M2-like TAMs. Cytokine array analyses were employed to discover the CAF-derived regulators of differentiation. These regulators were validated in primary CAFs and bone marrow-derived monocytes. Orthotopic, syngeneic colon carcinoma models using cotransplanted CAFs were established to observe effects on tumor growth and metastasis. To confirm a correlation with clinical evidence, meta-analyses were employed using the Oncomine database. Our coculture studies identify IL6 and GM-CSF as the pivotal signals released from cancer cell-activated CAFs that cooperate to induce monocyte differentiation into M2-like TAMs. In orthotopic, syngeneic colon carcinoma mouse models, cotransplanted CAFs elevated IL6 and GM-CSF levels, TAM infiltration, and metastasis. These pathologic effects were dramatically reversed by joint IL6 and GM-CSF blockade. A positive correlation between GM-CSF and IL6 expression and disease course was observed by meta-analyses of the clinical data. Our studies indicate a significant reappraisal of the role of IL6 and GM-CSF in metastasis and implicate CAFs as the "henchmen" for cancer cells in producing an immunosuppressive tumor ecological niche. Dual targeting of GM-CSF and IL6 is a promising new approach for inhibiting metastasis. .
SUMMARYWireless engineers and business planners commonly raise the question on where, when, and how millimeter-wave (mmWave) will be used in 5G and beyond. Since the next generation network is not just a new radio access standard, but also an integration of networks for vertical markets with diverse applications, answers to the question depend on scenarios and use cases to be deployed. This paper gives four 5G mmWave deployment examples and describes in chronological order the scenarios and use cases of their probable deployment, including expected system architectures and hardware prototypes. The first example is a 28 GHz outdoor backhauling for fixed wireless access and moving hotspots, which will be demonstrated at the PyeongChang Winter Olympic Games in 2018. The second deployment example is a 60 GHz unlicensed indoor access system at the Tokyo-Narita airport, which is combined with Mobile Edge Computing (MEC) to enable ultra-high speed content download with low latency. The third example is mmWave mesh network to be used as a micro Radio Access Network (µ-RAN), for cost-effective backhauling of small-cell Base Stations (BSs) in dense urban scenarios. The last example is mmWave based Vehicular-to-Vehicular (V2V) and Vehicular-to-Everything (V2X) communications system, which enables automated driving by exchanging High Definition (HD) dynamic map information between cars and Roadside Units (RSUs). For 5G and beyond, mmWave and MEC will play important roles for a diverse set of applications that require both ultra-high data rate and low latency communications. key words: millimeter wave, MEC, 28GHz, 60GHz, mesh network, V2V/V2X, automated driving, future forecast
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.