We analyse cosmological hydrodynamic simulations that include theoretically and observationally motivated prescriptions for galactic outflows. If these simulated winds accurately represent winds in the real Universe, then material previously ejected in winds provides the dominant source of gas infall for new star formation at redshifts z < 1. This recycled wind accretion, or wind mode, provides a third physically distinct accretion channel in addition to the ‘hot’ and ‘cold’ modes emphasized in recent theoretical studies. The recycling time of wind material (trec) is shorter in higher mass systems owing to the interaction between outflows and the increasingly higher gas densities in and around higher mass haloes. This differential recycling plays a central role in shaping the present‐day galaxy stellar mass function (GSMF), because declining trec leads to increasing wind mode galaxy growth in more massive haloes. For the three feedback models explored, the wind mode dominates above a threshold mass that primarily depends on wind velocity; the shape of the GSMF therefore can be directly traced back to the feedback prescription used. If we remove all particles that were ever ejected in a wind, then the predicted GSMFs are much steeper than observed. In this case, galaxy masses are suppressed both by the ejection of gas from galaxies and by the hydrodynamic heating of their surroundings, which reduces subsequent infall. With wind recycling included, the simulation that incorporates our favoured momentum‐driven wind scalings reproduces the observed GSMF for stellar masses 109 M⊙≤M≤ 5 × 1010 M⊙. At higher masses, wind recycling leads to excessive galaxy masses and star formation rates relative to observations. In these massive systems, some quenching mechanism must suppress not only the direct accretion from the primordial intergalactic medium but the re‐accretion of gas ejected from star‐forming galaxies. In short, as has long been anticipated, the form of the GSMF is governed by outflows; the unexpected twist here for our simulated winds is that it is not primarily the ejection of material but how the ejected material is re‐accreted that governs the GSMF.
The Sloan Digital Sky Survey (SDSS) started a new phase in 2008 August, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Lyα forest, and a radial velocity search for planets around ∼8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg 2 in the southern Galactic cap, bringing the total footprint of the SDSS imaging to 14,555 deg 2 , or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Exploration (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameter pipeline, which has better determination of metallicity for high-metallicity stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.