Coronavirus disease 2019 (COVID-19) is a multisystem illness caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which can manifest with a multitude of symptoms in the setting of end-organ damage, though it is predominantly respiratory. However, various symptoms may remain after acute SARS-CoV-2 infection, and this condition is referred to as “Long COVID” (LC). Patients with LC may develop multi-organ symptom complex that remains 4–12 weeks after the acute phase of illness, with symptoms intermittently persisting over time. The main symptoms are fatigue, post-exertional malaise, cognitive dysfunction, and limitation of functional capacity. Pediatric patients developed the main symptoms of LC like those described in adults, although there may be variable presentations of LC in children. The underlying mechanisms of LC are not clearly known, although they may involve pathophysiological changes generated by virus persistence, immunological alterations secondary to virus–host interaction, tissue damage of inflammatory origin and hyperactivation of coagulation. Risk factors for developing LC would be female sex, more than five early symptoms, early dyspnea, previous psychiatric disorders, and alterations in immunological, inflammatory and coagulation parameters. There is currently no specific treatment for LC, but it could include pharmacological treatments to treat symptoms, supplements to restore nutritional, metabolic, and gut flora balance, and functional treatments for the most disabling symptoms. In summary, this study aims to show the scientific community the current knowledge of LC.
Multiple myeloma (MM) is a hematological disease characterized by an abnormal accumulation of plasma cells in the bone marrow. These cells have frequent cytogenetic abnormalities including translocations of the immunoglobulin heavy chain gene and chromosomal gains and losses. In fact, a singular characteristic differentiating MM from other hematological malignancies is the presence of a high degree of aneuploidies. As chromosomal abnormalities can be generated by alterations in the spindle assembly checkpoint (SAC), the functionality of such checkpoint was tested in MM. When SAC components were analyzed in MM cell lines, the RNA levels of most of them were conserved. Nevertheless, the protein content of some key constituents was very low in several cell lines, as was the case of MAD2 or CDC20 in RPMI-8226 or RPMI-LR5 cells. The recovery of their cellular content did not substantially affect cell growth, but improved their ability to segregate chromosomes. Finally, SAC functionality was tested by challenging cells with agents disrupting microtubule dynamics. Most of the cell lines analyzed exhibited functional defects in this checkpoint. Based on the data obtained, alterations both in SAC components and their functionality have been detected in MM, pointing to this pathway as a potential target in MM treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.