Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs 1 . Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS-RAF-MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)-a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that * These authors contributed equally to this work.Supplementary Information is linked to the online version of the paper at www.nature.com/nature. Author Contributions N.Y. designed and performed the RNAi and VDAC overexpression, quantitative PCR, erastin analogue viability and chemical characterization experiments. E.Z. performed two-dimensional western analysis, PARP-1 and pro-caspase-3 cleavage, and cytochrome c release experiments. E.Z. and N.Y. performed transmission electron microscopy experiments. A.J.B., D.J.F. and N.Y. performed the NADH oxidation and direct binding experiments. W.S.Y. characterized sensitivity to erastin in the BJderived cell series. A.J.W. performed the MEK1/2 inhibitor experiment. I.S. and A.J.B. synthesized erastin analogues. R.S. and S.L.L. provided BRAF shRNAs, analysis of BRAF knockdown and the phospho-ERK western analysis. J.M.P., J.J.B. and S.S. were responsible for setting up the technology platform to pull down proteins binding to small molecule compounds. M.v.R. and J.M.P. performed the pull-down experiments. J.J.B., J.M.P. and S.S. designed, reviewed and supervised the pull-down experiments, and contributed to the analysis of the data. B.R.S. conceived of and supervised the project, designed and analysed experiments, and performed the anti-oxidant studies. B.R.S. and N.Y. prepared the manuscript. (Fig. 1a , Supplementary Fig. 1 and ref. 3 ). This cell death was not dependent on the rate of cell division, nor was it idiosyncratic to these cells ( Fig. 1a and Supplementary Fig. 2), because cell lines engineered in a similar way responded similarly. Author InformationWe found th...
Huntington's disease (HD) is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt) protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%–4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to co-immunoprecipitate with full-length Htt from mouse brain. These studies demonstrate that high-throughput screening for protein interactions combined with genetic validation in a model organism is a powerful approach for identifying novel candidate modifiers of polyglutamine toxicity.
High-throughput screening (HTS) is an integral part of early drug discovery. Herein, we focused on those small molecules in a screening collection that have never shown biological activity despite having been exhaustively tested in HTS assays. These compounds are referred to as 'dark chemical matter' (DCM). We quantified DCM, validated it in quality control experiments, described its physicochemical properties and mapped it into chemical space. Through analysis of prospective reporter-gene assay, gene expression and yeast chemogenomics experiments, we evaluated the potential of DCM to show biological activity in future screens. We demonstrated that, despite the apparent lack of activity, occasionally these compounds can result in potent hits with unique activity and clean safety profiles, which makes them valuable starting points for lead optimization efforts. Among the identified DCM hits was a new antifungal chemotype with strong activity against the pathogen Cryptococcus neoformans but little activity at targets relevant to human safety.
Activation of cyclic nucleotide dependent signaling pathways leads to relaxation of smooth muscle, alterations in the cytoskeleton of cultured cells, and increases in the phosphorylation of HSP20. To determine the effects of phosphorylated HSP20 on the actin cytoskeleton, phosphopeptide analogs of HSP20 were synthesized. These peptides contained 1) the amino acid sequence surrounding the phosphorylation site of HSP20, 2) a phosphoserine, and 3) a protein transduction domain. Treatment of Swiss 3T3 cells with phosphopeptide analogs of HSP20 led to loss of actin stress fibers and focal adhesion complexes as demonstrated by immunocytochemistry, interference reflection microscopy, and biochemical quantitation of globular-actin. Treatment with phosphopeptide analogs of HSP20 also led to dephosphorylation of the actin depolymerizing protein cofilin. Pull-down assays demonstrated that 14-3-3 proteins associated with phosphopeptide analogs of HSP20 (but not peptide analogs in which the serine was not phosphorylated). The binding of 14-3-3 protein to phosphopeptide analogs of HSP20 prevented the association of cofilin with 14-3-3. These data suggest that HSP20 may modulate actin cytoskeletal dynamics by competing with the actin depolymerizing protein cofilin for binding to the scaffolding protein 14-3-3. Interestingly, the entire protein was not needed for this effect, suggesting that the association is modulated by phosphopeptide motifs of HSP20. These data also suggest the possibility that cyclic nucleotide dependent relaxation of smooth muscle may be mediated by a thin filament (actin) regulatory process. Finally, these data suggest that protein transduction can be used as a tool to elucidate the specific function of peptide motifs of proteins.
AMT1 is the transcription factor required for Cu-induced expression of metallothionein genes in the yeast Candida glabrata. The copper-binding, DNA-binding domain of AMT1 has been purified after expression of an AMT1 synthetic gene in bacteria and was confirmed as active in a gel shift assay. The Cu-activated AMT1 was shown to contain a Cu(+)-thiolate tetracopper center and a single Zn2+ site. AMT1 is purified as a Cu-Zn protein from bacterial cultures grown in the presence of CuSO4. Chemical analysis suggested that 4.2 +/- 0.2 and 1.2 +/- 0.2 molar equiv copper and zinc ions bound, respectively. Electrospray mass spectrometry was used to verify that a uniform species was present with 4 Cu+ ions and 1 Zn2+ ion bound per AMT1 molecule. Cu+ binding to form a tetracopper center occurs cooperatively as shown by electrospray MS of apoAMT1 samples reconstituted with increasing equivalency of Cu+. Copper-thiolate coordination was indicated by Cu-S charge-transfer transitions in the ultraviolet, luminescence typical of Cu-thiolate clusters and EXAFS. Analysis of the EXAFS of CuZnAMT1 revealed predominantly trigonal Cu+ coordination and the presence of a polycopper cluster by virtue of a short Cu-Cu distance of 2.7 A. Zn K-edge EXAFS of Cu4Zn1AMT1 and electronic spectroscopy of AMT1 with Co2+ substituted for the single Zn2+ ion are consistent with tetrahedral Zn2+ coordination with thiolate ligands. The Cu-activated AMT1 exhibited a conformation distinct from that of metal-free AMT1 as shown by circular dichroism. DNA binding by AMT1 was dependent on the tetracopper center but was independent of occupancy of the Zn2+ site. This is the first report of a single, uniform tetracopper center in a metal-activated transcription factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.