Highlights d Three groups of highly genetically-related disorders among 8 psychiatric disorders d Identified 109 pleiotropic loci affecting more than one disorder d Pleiotropic genes show heightened expression beginning in 2 nd prenatal trimester d Pleiotropic genes play prominent roles in neurodevelopmental processes Authors Cross-Disorder Group of the Psychiatric Genomics Consortium
BACKGROUND Neuroimaging studies show structural alterations in several brain regions in children and adults with attention-deficit/hyperactivity disorder (ADHD). Through the formation of the worldwide ENIGMA ADHD Working Group, we addressed weaknesses of prior imaging studies and meta-analyses in sample size and methodological heterogeneity. METHODS Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites (age range: 4–63 years; 66% males). Individual sites analyzed magnetic resonance imaging brain scans with harmonized protocols. Case-control differences in subcortical structures and intracranial volume (ICV) were assessed through mega-and meta-analysis. FINDINGS The volumes of the accumbens (Cohen’s d=−0.15), amygdala (d=−0.19), caudate (d=−0.11), hippocampus (d=−0.11), putamen (d=−0.14), and ICV (d=−0.10) were found to be smaller in cases relative to controls. Effect sizes were highest in children, case-control differences were not present in adults. Explorative lifespan modeling suggested a delay of maturation and a delay of degeneration. Psychostimulant medication use or presence of comorbid psychiatric disorders did not influence results, nor did symptom scores correlate with brain volume. INTERPRETATION Using the largest data set to date, we extend the brain maturation delay theory for ADHD to include subcortical structures and refute medication effects on brain volume suggested by earlier meta-analyses. We add new knowledge about bilateral amygdala, accumbens, and hippocampus reductions in ADHD, and provide unprecedented precision in effect size estimates. Lifespan analyses suggest that, in the absence of well-powered longitudinal studies, the ENIGMA cross-sectional sample across six decades of life provides a means to generate hypotheses about lifespan trajectories in brain phenotypes. FUNDING National Institutes of Health
Objective To conduct a genome-wide association study (GWAS) of anorexia nervosa and to calculate genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Method Following uniform quality control and imputation using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, we performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression (LDSC) was used to calculate genome-wide common variant heritability [ hSNP2, partitioned heritability, and genetic correlations (rg)] between anorexia nervosa and other phenotypes. Results Results were obtained for 10,641,224 single nucleotide polymorphisms (SNPs) and insertion-deletion variants with minor allele frequency > 1% and imputation quality scores > 0.6. The hSNP2 of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. We identified one genome-wide significant locus on chromosome 12 (rs4622308, p=4.3×10−9) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high density lipoprotein (HDL) cholesterol, and significant negative genetic correlations between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Conclusions Anorexia nervosa is a complex heritable phenotype for which we have found the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. Our results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.
Learning to associate auditory information of speech sounds with visual information of letters is a first and critical step for becoming a skilled reader in alphabetic languages. Nevertheless, it remains largely unknown which brain areas subserve the learning and automation of such associations. Here, we employ functional magnetic resonance imaging to study letter-speech sound integration in children with and without developmental dyslexia. The results demonstrate that dyslexic children show reduced neural integration of letters and speech sounds in the planum temporale/Heschl sulcus and the superior temporal sulcus. While cortical responses to speech sounds in fluent readers were modulated by letter-speech sound congruency with strong suppression effects for incongruent letters, no such modulation was observed in the dyslexic readers. Whole-brain analyses of unisensory visual and auditory group differences additionally revealed reduced unisensory responses to letters in the fusiform gyrus in dyslexic children, as well as reduced activity for processing speech sounds in the anterior superior temporal gyrus, planum temporale/Heschl sulcus and superior temporal sulcus. Importantly, the neural integration of letters and speech sounds in the planum temporale/Heschl sulcus and the neural response to letters in the fusiform gyrus explained almost 40% of the variance in individual reading performance. These findings indicate that an interrelated network of visual, auditory and heteromodal brain areas contributes to the skilled use of letter-speech sound associations necessary for learning to read. By extending similar findings in adults, the data furthermore argue against the notion that reduced neural integration of letters and speech sounds in dyslexia reflect the consequence of a lifetime of reading struggle. Instead, they support the view that letter-speech sound integration is an emergent property of learning to read that develops inadequately in dyslexic readers, presumably as a result of a deviant interactive specialization of neural systems for processing auditory and visual linguistic inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.