This study aims to develop a second order self-organizing fuzzy neural network (SOFNN) to predict the hourly concentrations of fine particulate matter (PM 2.5) for the next 24 h at a regional background station called Shangdianzi (SDZ) in China from 14 to 23 January 2010. The structure of the SOFNN was automatically adjusted according to the sensitivity analysis (SA) of model output and the parameter-learning phase was performed applying a second order gradient (SOG) algorithm. Principal component analysis (PCA) was employed to select the dominating factors for PM 2.5 concentrations as the input variables for the SOFNN. It was found that the dominating variables (relative humidity (RH), pressure (Pre), aerosol optical depth (AOD), wind speed (WS) and wind direction (WD)) extracted by PCA agreed well with the characteristics of PM 2.5 at SDZ where the PM 2.5 concentrations were heavily affected by meteorological parameters and were closely related to AOD. The forecasting results showed that the proposed SOG-SASOFNN performed better than other models with higher coefficient of determination (R 2) during both training phase and test phase (0.89 and 0.84, respectively) in predicting PM 2.5 concentrations at SDZ. In conclusion, the developed SOG-SASOFNN provided satisfying results for modeling the hourly distribution of PM 2.5 at SDZ during the studied period.
A two-loop cascade adaptive controller is proposed for a non-stable, non-linear, strong coupling system using backstepping and fuzzy neural network (FNN). The proposed approach uses fuzzy neural networks to approximate unknown nonlinear function. Then, use backstepping to design adaptive controller to realize self-balancing control of robot. The simulation results indicate that both speediness and stability performance in robot is improved, and there is well control performance in trouble.
Associative learning, including classical conditioning and operant conditioning, is regarded as the most fundamental type of learning for animals and human beings. Many models have been proposed surrounding classical conditioning or operant conditioning. However, a unified and integrated model to explain the two types of conditioning is much less studied. Here, a model based on neuromodulated synaptic plasticity is presented. The model is bioinspired including multistored memory module and simulated VTA dopaminergic neurons to produce reward signal. The synaptic weights are modified according to the reward signal, which simulates the change of associative strengths in associative learning. The experiment results in real robots prove the suitability and validity of the proposed model.
Aiming at remedying the problem of low prediction accuracy of existing air pollutant prediction models, a denoising autoencoder deep network (DAEDN) model that is based on long short-term memory (LSTM) networks was designed. This model created a noise reduction autoencoder with an LSTM network to extract the inherent air quality characteristics of original monitoring data and to implement noise reduction processing on monitoring data to improve the accuracy of air quality predictions. The LSTM network structure in the DAEDN model was designed as bidirectional LSTM (Bi-LSTM) to solve the problem of a lag in the unidirectional LSTM prediction results and thereby to further improve the prediction accuracy of the prediction model. Using air pollutant time series data, the DAEDN model was trained using hourly PM2.5 concentration data collected in Beijing over 5 years. The experimental results show that the DAEDN model can extract more stable features from the noisy input after training was completed. The models were evaluated using RMSE and MAE, and the results show that the indexes are 15.504 and 6.789; compared with unidirectional LSTM, it is reduced by 7.33% and 5.87%, respectively. In addition, the new prediction model essentially considered the time series properties of the prediction of the concentration of spatial pollutants and the fully integrated environmental big data, such as air quality monitoring, meteorological monitoring, and forecasting.
This paper presents an OCPA (operant conditioning probabilistic automaton) bionic autonomous learning system based on Skinner's operant conditioning theory for solving the balance control problem of a two-wheeled flexible robot. The OCPA learning system consists of two stages: in the first stage, an operant action is selected stochastically from a set of operant actions and then used as the input of the control system; in the second stage, the learning system gathers the orientation information of the system and uses it for optimization until achieves control target. At the same time, the size of the operant action set can be automatically reduced during the learning process for avoiding little probability event. Theory analysis is made for the designed OCPA learning system in the paper, which theoretically proves the convergence of operant conditioning learning mechanism in OCPA learning system, namely the operant action entropy will converge to minimum with the learning process. And then OCPA learning system is applied to posture balanced control of two-wheeled flexible self-balanced robots. Robot does not have posutre balanced skill in initial state and the selecting probability of each operant in operant sets is equal. With the learning proceeding, the selected probabilities of optimal operant gradually tend to one and the operant action entropy gradually tends to minimum, and so robot gradually learned the posture balanced skill.
To solve the navigation problem of mobile robot in unknown environment, a navigation scheme based on bionic strategy was proposed, which simulates operant conditioning mechanism. In this scheme, the tendency cell was designed by use of information entropy, which represents the tendency degree for state. The improved Q learning algorithm used as learning core to direct the learning direction. The Boltzmann machine was used to process annealing calculation, which can randomly selected navigation action. The selected strategy of action will tend to optimal with the learning process. Simulation analyses were carried out in mobile robot; results showed that the proposed method had quick learning velocity and accurate navigation ability, and robot could successfully evade obstacles and arrived at goal point with optimal path.
High complexity and low recognition rate are two common problems with the current finger vein recognition methods. To solve these problems, this paper integrates two-dimensional kernel principal component analysis (K2DPCA) plus two-dimensional linear discriminant analysis (2DLDA) (K2DPCA+2DLDA) into convolutional neural network (CNN) to recognize finger veins. Considering the row and column correlations of the finger vein image matrix and the classes of finger vein images, the authors adopted K2DPCA and 2DLDA separately for dimensionality reduction and extraction of nonlinear features in row and column directions, producing a dimensionally reduced compressed image without row or column correlation. Taking the dimensionally reduced compressed image as the input, the CNN was introduced to learn higher-level features, making finger vein recognition more accurate and robust. The public dataset of Finger Vein USM (FV-USM) Database was adopted for experimental verification. The results show that the proposed approach effectively overcome the common defects of original image feature extraction: the insufficient feature description, and the redundancy of information. When the training reached 120 epochs, the model basically realized stable convergence, with the loss approaching zero and the recognition rate reaching 97.3%. Compared with two-directional two-dimensional Fisher principal component analysis ((2D)2FPCA), our strategy, which integrates K2DPCA+2DLDA with CNN, achieved a very high recognition rate of finger vein images.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers