Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking gas-storage capacities, their conventionally powdered morphology renders them non-viable. Traditional powder shaping utilising high pressure or chemical binders collapses porosity or creates low-density structures with reduced volumetric adsorption capacity. Here, we report the engineering of one of the most stable MOFs, Zr-UiO-66, without applying pressure or binders. The process yields centimetre-sized monoliths, displaying high microporosity and bulk density. We report the inclusion of variable, narrow mesopore volumes to the monoliths’ macrostructure and use this to optimise the pore-size distribution for gas uptake. The optimised mixed meso/microporous monoliths demonstrate Type II adsorption isotherms to achieve benchmark volumetric working capacities for methane and carbon dioxide. This represents a critical advance in the design of air-stable, conformed MOFs for commercial gas storage.
Metal-organic frameworks (MOFs) have been evaluated as potential nanocarriers for intra-ocular incorporation of brimonidine tartrate to treat chronic glaucoma. Experimental results show that UiO-67 and MIL-100 (Fe) exhibit the highest loading capacity with values up to 50-60 wt.%, while the performance is quite limited for MOFs with narrow cavities (below 0.8 nm, e.g. UiO-66 and HKUST-1). The large loading capacity in UiO-67 is accompanied by an irreversible structural amorphization in aqueous and physiological media that promotes extended release kinetics above 12 days. Compared to the traditional drawbacks associated with the sudden release of the commercial drugs (e.g., ALPHAGAN), these results anticipate UiO-67 as a potential nanocarrier for drug delivery in intra-ocular therapeutics. These promising results are further supported by cytotoxicity tests using retinal photoreceptor cells (661W). Toxicity of these structures (including the metal nodes and organic ligands) for retinal cells is rather low for all samples evaluated, except for HKUST-1.
Novel MOF-based polymer nanocomposite films were successfully prepared using Zrbased UiO-67 as a metal-organic framework (MOF) and polyurethane (PU) as a polymeric matrix. Synchrotron X-ray powder diffraction (SXRPD) analysis confirms the improved stability of the UiO-67 embedded nanocrystals and scanning electron microscopy images confirm their homogeneous distribution (average crystal size ~ 100-200 nm) within the 50-µm thick film. Accessibility to the inner porous structure of the embedded MOFs was completely suppressed for N2 at cryogenic temperatures.However, ethylene adsorption measurements at 25ºC confirm that at least 45% of the MOF crystals are fully accessible for gas phase adsorption of non-polar molecules.Although this partial blockage limits the adsorption performance of the embedded MOFs for ocular drugs (e.g., brimonidine tartrate) compared to the pure MOF, an almost 60-fold improvement in the adsorption capacity was observed for PU matrix after incorporation of the UiO-67 nanocrystals. UiO-67@PU nanocomposite exhibits a prolonged release of brimonidine (up to 14 days were quantified). Finally, the combined use of SXRPD, thermogravimetric analysis (TGA) and FTIR analysis confirmed the presence of the drug in the nanocomposite film, the stability of the MOF framework and the drug upon loading, and the presence of brimonidine in an amorphous phase once adsorbed. These results open the gate towards the application of these polymeric nanocomposite films for drug delivery in optical therapeutics, either as a component of contact lens, in the composition of lacrimal stoppers (e.g., punctal plugs) or in sub-tenon inserts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.