On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
ForewordThe Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m 2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors.This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime 1 . We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.The Pierre Auger Collaboration 1 As a result of continuing R&D, slight changes have been implemented in the baseline design since this Report was written. These changes will be documented in a forthcoming Technical Design Report. ix x Executive Summary Present Results from the Pierre Auger ObservatoryMeasurements of the Auger Observatory have dramatically advanced our understanding of ultra-high energy cosmic rays. The suppression of the flux around 5×10 19 eV is now confirmed without any doubt. Strong limits have been placed on the photon and neutrino components of the flux indicating that "top-down" source processes, such as the decay of superheavy particles, cannot account for a significant part of the observed particle flux. A largescale dipole anisotropy of ∼7% amplitude has been found for energies above 8×10 18 eV. In addition there is also an indication of the presence of a large scale anisotropy below the ankle. Particularly exciting is the observed behavior of the depth of shower maximum with energy, which changes in an unexpected, non-trivial way. Around 3×10 18 eV it shows a distinct change of slope with energy, and the shower-to-shower variance decreases. Interpreted with the leading LHC-tuned shower models, this implies a gradual shift to a heavier composition. A number of fundamentally different astrophysical model scenarios have been developed to describe this evolution. The high degree of isotropy observed in numerous tests of the small-scale angular distribution of UHECR above 4×10 19 eV is remarkable, challenging original expectations that assumed only a few cosmic ray sources with a light composition at the highest energies. Interestingly, the largest departures from isotropy are observed for cosmic rays with E > 5.8×10 19 eV in ∼20 • sky-windows. Due to a duty cycle of ∼15% of the fluorescence telescopes, the data on the depth of shower maximum extend only up to the flux suppression region, i.e. 4×10 19 eV. Obtaining more information on the composition of cosmic rays at higher energies will provide crucial means to discriminate between the model classes and to understand the origin of the observed flux suppre...
he Pierre Auger Observatory, located on a vast, high plain in western\ud Argentina, is the world's largest cosmic ray observatory. The objectives\ud of the Observatory are to probe the origin and characteristics of cosmic\ud rays above 10(17) eV and to study the interactions of these, the most\ud energetic particles observed in nature. The Auger design features an\ud array of 1660 water Cherenkov particle detector stations spread over\ud 3000 km(2) overlooked by 24 air fluorescence telescopes. In addition,\ud three high elevation fluorescence telescopes overlook a 23.5 km(2),\ud 61-detector infilled array with 750 in spacing. The Observatory has been\ud in successful operation since completion in 2008 and has recorded data\ud from an exposure exceeding 40,000 km(2) sr yr. This paper describes the\ud design and performance of the detectors, related subsystems and\ud infrastructure that make up the Observatory
We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 • 10 18 eV, i.e. the region of the all-particle spectrum above the so-called "ankle" feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show that uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.
A new analysis of the data set from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above with zenith angles up to 80° recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects, and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0σ, the highest value of the test statistic being for energies above . The three alternative models are favored against isotropy with 2.7σ–3.2σ significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.