The subcritical polyethylene-reflected plutonium (PERP) metal fundamental physics benchmark, which is included in the Nuclear Energy Agency (NEA) International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook, has been selected to serve as a paradigm illustrative reactor physics system for the application of the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) that was developed by Cacuci. The 2nd-ASAM enables the exhaustive deterministic computation of the exact values of the 1st-order and 2nd-order sensitivities of a system response to the parameters underlying the respective system. The PERP benchmark is numerically modeled in this work by using the deterministic multigroup neutron transport equation discretized in the spatial and angular independent variables. Thus, the numerical model of the PERP benchmark developed includes the following imprecisely known uncertain parameters: 180 group-averaged total microscopic cross sections, 21,600 group-averaged scattering microscopic cross sections, 120 fission process parameters, 60 fission spectrum parameters, 10 parameters describing the experiment’s nuclear sources, and six isotopic number densities. Thus, the numerical simulation model for the PERP benchmark comprises 21,976 uncertain parameters, which implies that, for any response of interest, there are a total of 21,976 first-order sensitivities and 482,944,576 second-order sensitivities with respect to the model parameters. Computing these sensitivities exactly represents the largest sensitivity analysis endeavor ever carried out in the field of reactor physics. Only 241,483,276 are distinct from each other, and some of these turned out to be zero due to the symmetry of the 2nd-order sensitivities. The numerical results for all of these sensitivities, together with discussions of their major impacts, will be presented in a sequence of publications in the Special Issue of Energies dedicated to “Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems”. This work is the first in this sequence, presenting formulas of general use for neutron transport problems, along with the numerical results that were produced by these formulas for the 180 first-order and 32,400 second-order sensitivities of the PERP leakage response with respect to the neutron transport model’s group-averaged isotopic total cross sections. For comparison, this work also presents formulas of general use and numerical results for the 180 first-order and 32,400 second-order sensitivities of the PERP leakage response with respect to the neutron transport model’s group-averaged isotopic capture cross sections. It has been widely believed hitherto that, for reactor physics systems modeled by the neutron transport or diffusion equations, the second-order sensitivities are all much smaller than the first-order ones. However, contrary to this widely held belief, the numerical results that were obtained in this work prove, for the first time ever, that many of the 2nd-order sensitivities are much larger than the corresponding 1st-order ones, so their effects can become much larger than the corresponding effects stemming from the 1st-order sensitivities. For example, the 2nd-order sensitivities of the PERP leakage response cause the expected value of this response to be significantly larger than the corresponding computed value. The importance of the 2nd-order sensitivities increases as the relative standard deviations for the cross sections increase. For the extreme case of fully correlated cross sections, for example, neglecting the 2nd-order sensitivities would cause an error as large as 2000% in the expected value of the leakage response and up to 6000% in the variance of the leakage response. The significant effects of the mixed 2nd-order sensitivities underscore the need for reliable values for the correlations that might exist among the total cross sections, which are unavailable at this time. The 2nd-order sensitivities with respect to the total cross sections also cause the response distribution to be skewed towards positive values relative to the expected value. Hence, neglecting the 2nd-order sensitivities could potentially cause very large non-conservative errors by under-reporting of the response variance and expected value.
The Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) is applied to compute the first-order and second-order sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental system with respect to the following nuclear data: Group-averaged isotopic microscopic fission cross sections, mixed fission/total, fission/scattering cross sections, average number of neutrons per fission (), mixed /total cross sections, /scattering cross sections, and /fission cross sections. The numerical results obtained indicate that the 1st-order relative sensitivities for these nuclear data are smaller than the 1st-order sensitivities of the PERP leakage response with respect to the total cross sections but are larger than those with respect to the scattering cross sections. The vast majority of the 2nd-order unmixed sensitivities are smaller than the corresponding 1st-order ones, but several 2nd-order mixed relative sensitivities are larger than the 1st-order ones. In particular, several 2nd-order sensitivities for 239Pu are significantly larger than the corresponding 1st-order ones. It is also shown that the effects of the 2nd-order sensitivities of the PERP benchmark’s leakage response with respect to the benchmark’s parameters underlying the average number of neutrons per fission, , on the moments (expected value, variance, and skewness) of the PERP benchmark’s leakage response distribution are negligible by comparison to the corresponding effects (on the response distribution) stemming from uncertainties in the total cross sections, but are larger than the corresponding effects (on the response distribution) stemming from uncertainties in the fission and scattering cross sections.
This work applies the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) to compute the 1st-order and unmixed 2nd-order sensitivities of a polyethylene-reflected plutonium (PERP) benchmark’s leakage response with respect to the benchmark’s imprecisely known isotopic number densities. The numerical results obtained for these sensitivities indicate that the 1st-order relative sensitivity to the isotopic number densities for the two fissionable isotopes have large values, which are comparable to, or larger than, the corresponding sensitivities for the total cross sections. Furthermore, several 2nd-order unmixed sensitivities for the isotopic number densities are significantly larger than the corresponding 1st-order ones. This work also presents results for the first-order sensitivities of the PERP benchmark’s leakage response with respect to the fission spectrum parameters of the two fissionable isotopes, which have very small values. Finally, this work presents the overall summary and conclusions stemming from the research findings for the total of 21,976 first-order sensitivities and 482,944,576 second-order sensitivities with respect to all model parameters of the PERP benchmark, as presented in the sequence of publications in the Special Issue of Energies dedicated to “Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems”.
SENSMG is a tool for calculating the first-order sensitivities of reaction-rate ratios, k eff , and α in critical problems and reaction-rate ratios, reaction rates, and leakage in fixed-source problems to multigroup cross sections, isotope densities, material mass densities, and interface locations using the PARTISN multigroup discreteordinates code by implementing Generalized Perturbation Theory. SENSMG can be used for one-dimensional spherical and slab (r) and two-dimensional cylindrical (r-z) geometries. For fixed-source (leakage) problems, SENSMG relies on the MISC and/or SOURCES4C codes to compute neutron source rate densities from spontaneous fission and (α,n) sources. SENSMG is a combination of Python and Fortran and was developed under Linux. This computer code abstract describes all user inputs, the input file, and output files. This computer code abstract describes how SENSMG can be modified to support different computer platforms, PARTISN versions, or crosssection availability. Several verification problems are presented in which SENSMG results are compared with MCNP6, SCALE6.2, and direct perturbations (central differences). SENSMG is available at https://github.com/jafavorite/SENSMG. SENSMG can be modified to accommodate other deterministic transport codes that have an adjoint capability.
-This work presents an application of Cacuci's Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) to the simplified Boltzmann equation that models the transport of uncollided particles through a medium to compute efficiently and exactly all of the first-and second-order derivatives (sensitivities) of a detector's response with respect to the system's isotopic number densities, microscopic cross sections, source emission rates, and detector response function. The off-the-shelf PARTISN multigroup discrete ordinates code is employed to solve the equations underlying the 2nd-ASAM. The accuracy of the results produced using PARTISN is verified by using the results of three test configurations: (1) a homogeneous sphere, for which the response is the exactly known total uncollided leakage, (2) a multiregion two-dimensional (r-z) cylinder, and (3) a two-region sphere for which the response is a reaction rate. For the homogeneous sphere, results for the total leakage as well as for the respective first-and second-order sensitivities are in excellent agreement with the exact benchmark values. For the nonanalytic problems, the results obtained by applying the 2nd-ASAM to compute sensitivities are in excellent agreement with central-difference estimates. The efficiency of the 2nd-ASAM is underscored by the fact that, for the cylinder, only 12 adjoint PARTISN computations were required by the 2nd-ASAM to compute all of the benchmark's 18 first-order sensitivities and 224 second-order sensitivities, in contrast to the 877 PARTISN calculations needed to compute the respective sensitivities using central finite differences, and this number does not include the additional calculations that were required to find appropriate values of the perturbations to use for the central differences.Keywords -Second-order adjoint sensitivity analysis, particle and radiation transport, response variance and skewness.Note -Some figures may be in color only in the electronic version.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers