Interactions of cytochrome c (cyt c) with cardiolipin (CL) are important for both electron transfer and apoptotic functions of this protein. A sluggish peroxidase in its native state, when bound to CL, cyt c catalyzes CL peroxidation, which contributes to the protein apoptotic release. The heterogeneous CL-bound cyt c ensemble is difficult to characterize with traditional structural methods and ensemble-averaged probes. We have employed time-resolved FRET measurements to evaluate structural properties of the CL-bound protein in four dansyl (Dns)-labeled variants of horse heart cyt c. The Dns decay curves and extracted Dns-to-heme distance distributions PðrÞ reveal a conformational diversity of the CL-bound cyt c ensemble with distinct populations of the polypeptide structures that vary in their degree of protein unfolding. A fraction of the ensemble is substantially unfolded, with Dns-to-heme distances resembling those in the guanidine hydrochloride-denatured state. These largely open cyt c structures likely dominate the peroxidase activity of the CL-bound cyt c ensemble. Site variations in PðrÞ distributions uncover structural features of the CL-bound cyt c, rationalize previous findings, and implicate the prime role of electrostatic interactions, particularly with the protein C terminus, in the CL-induced unfolding.membrane | redox protein | fluorescence
Interactions of cytochrome c (cyt c) with a unique mitochondrial glycerophospholipid cardiolipin (CL) are relevant for the protein’s function in oxidative phosphorylation and apoptosis. Binding to CL-containing membranes promotes cyt c unfolding and dramatically enhances the protein’s peroxidase activity, which is critical in early stages of apoptosis. We have employed a collection of seven dansyl variants of horse heart cyt c to probe the sequence of steps in this functional transformation. Kinetic measurements have unraveled four distinct processes during CL-induced cyt c unfolding: rapid protein binding to CL liposomes; rearrangements of protein substructures with small unfolding energies; partial insertion of the protein into the lipid bilayer; and extensive protein restructuring leading to “open” extended structures. While early rearrangements depend on a hierarchy of foldons in the native structure, the later process of large-scale unfolding is influenced by protein interactions with the membrane surface. The opening of the cyt c structure exposes the heme group, which enhances the protein’s peroxidase activity and also frees the C-terminal helix to aid in the translocation of the protein through CL membranes.
Using a collection of dye-labeled cytochrome c (cyt c) variants, we identify transformations of heterogeneous cardiolipin (CL)-bound cyt c ensemble with added ATP. Distributions of dye-to-heme distances P(r) from time-resolved FRET show that ATP decreases the population of largely unfolded cyt c conformers, but its effects are distinct from those of a simple salt. High peroxidase activity of CL-bound cyt c with added ATP suggests binding interactions that favor protein structures with the open heme pocket. Although ATP weakens cyt c – CL binding interactions, it also boosts the apoptosis-relevant peroxidase activity of CL-bound cyt c.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers