We report the discovery of two ultra-faint stellar systems found in early data from the DECam Local Volume Exploration survey (DELVE). The first system, Centaurus I (DELVE J1238−4054), is identified as a resolved overdensity of old and metal-poor stars with a heliocentric distance of D = 116.3 +0.6 −0.6 kpc, a half-light radius of r h = 2.3 +0.4 −0.3 arcmin, an age of τ > 12.85 Gyr, a metallicity of Z = 0.0002 +0.0001 −0.0002 , and an absolute magnitude of M V = −5.55 +0.11 −0.11 mag. This characterization is consistent with the population of ultra-faint satellites, and confirmation of this system would make Centaurus I one of the brightest recently discovered ultra-faint dwarf galaxies. Centaurus I is detected in Gaia DR2 with a clear and distinct proper motion signal, confirming that it is a real association of stars distinct from the Milky Way foreground; this is further supported by the clustering of blue horizontal branch stars near the centroid of the system. The second system, DELVE 1 (DELVE J1630−0058), is identified as a resolved overdensity of stars with a heliocentric distance of D = 19.0 +0.5 −0.6 kpc, a half-light radius of r h = 0.97 +0.24 −0.17 arcmin, an age of τ = 12.5 +1.0 −0.7 Gyr, a metallicity of Z = 0.0005 +0.0002 −0.0001 , and an absolute magnitude of M V = −0.2 +0.8 −0.6 mag, consistent with the known population of faint halo star clusters. Given the low number of probable member stars at magnitudes accessible with Gaia DR2, a proper motion signal for DELVE 1 is only marginally detected. We compare the spatial position and proper motion of both Centaurus I and DELVE 1 with simulations of the accreted satellite population of the Large Magellanic Cloud (LMC) and find that neither is likely to be associated with the LMC.
The DECam Local Volume Exploration survey (DELVE) is a 126-night survey program on the 4 m Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile. DELVE seeks to understand the characteristics of faint satellite galaxies and other resolved stellar substructures over a range of environments in the Local Volume. DELVE will combine new DECam observations with archival DECam data to cover ∼15,000 deg2 of high Galactic latitude (∣b∣ > 10°) southern sky to a 5σ depth of g, r, i, z ∼ 23.5 mag. In addition, DELVE will cover a region of ∼2200 deg2 around the Magellanic Clouds to a depth of g, r, i ∼ 24.5 mag and an area of ∼135 deg2 around four Magellanic analogs to a depth of g, i ∼ 25.5 mag. Here, we present an overview of the DELVE program and progress to date. We also summarize the first DELVE public data release (DELVE DR1), which provides point-source and automatic aperture photometry for ∼520 million astronomical sources covering ∼5000 deg2 of the southern sky to a 5σ point-source depth of g = 24.3 mag, r = 23.9 mag, i = 23.3 mag, and z = 22.8 mag. DELVE DR1 is publicly available via the NOIRLab Astro Data Lab science platform.
We present the weak lensing mass calibration of the stellar mass based μ⋆ mass proxy for redMaPPer galaxy clusters in the Dark Energy Survey Year 1. For the first time we are able to perform a calibration of μ⋆ at high redshifts, z > 0.33. In a blinded analysis, we use ∼6, 000 clusters split into 12 subsets spanning the ranges 0.1 ≤ z < 0.65 and μ⋆ up to ∼5.5 × 1013M⊙, and infer the average masses of these subsets through modelling of their stacked weak lensing signal. In our model we account for the following sources of systematic uncertainty: shear measurement and photometric redshift errors, miscentring, cluster-member contamination of the source sample, deviations from the NFW halo profile, halo triaxiality and projection effects. We use the inferred masses to estimate the joint mass–μ⋆–z scaling relation given by $\langle M_{200c} | \mu _{\star },z \rangle = M_0 (\mu _{\star }/5.16\times 10^{12} \mathrm{M_{\odot }})^{F_{\mu _{\star }}} ((1+z)/1.35)^{G_z}$. We find M0 = (1.14 ± 0.07) × 1014M⊙ with $F_{\mu _{\star }}= 0.76 \pm 0.06$ and Gz = −1.14 ± 0.37. We discuss the use of μ⋆ as a complementary mass proxy to the well-studied richness λ for: i) exploring the regimes of low z, λ < 20 and high λ, z ∼ 1; ii) testing systematics such as projection effects for applications in cluster cosmology.
Cosmological constraints from current and upcoming galaxy cluster surveys are limited by the accuracy of cluster mass calibration. In particular, optically identified galaxy clusters are prone to selection effects that can bias the weak lensing mass calibration. We investigate the selection bias of the stacked cluster lensing signal associated with optically selected clusters, using clusters identified by the redMaPPer algorithm in the Buzzard simulations as a case study. We find that at a given cluster halo mass, the residuals of redMaPPer richness and weak lensing signal are positively correlated. As a result, for a given richness selection, the stacked lensing signal is biased high compared with what we would expect from the underlying halo mass probability distribution. The cluster lensing selection bias can thus lead to overestimated mean cluster mass and biased cosmology results. We show that the lensing selection bias exhibits a strong scale-dependence and is approximately 20 – 60% for ΔΣ at large scales. This selection bias largely originates from spurious member galaxies within ±20 – 60 $h^{-1} \rm Mpc$ along the line of sight, highlighting the importance of quantifying projection effects associated with the broad redshift distribution of member galaxies in photometric cluster surveys. While our results qualitatively agree with those in the literature, accurate quantitative modelling of the selection bias is needed to achieve the goals of cluster lensing cosmology and will require synthetic catalogues covering a wide range of galaxy–halo connection models.
We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of ∼160,000 exposures that cover >21,000 deg2 of the high-Galactic-latitude (∣b∣ > 10°) sky in four broadband optical/near-infrared filters (g, r, i, z). DELVE DR2 provides point-source and automatic aperture photometry for ∼2.5 billion astronomical sources with a median 5σ point-source depth of g = 24.3, r = 23.9, i = 23.5, and z = 22.8 mag. A region of ∼17,000 deg2 has been imaged in all four filters, providing four-band photometric measurements for ∼618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.