Preface The narrow membrane necks formed during viral, exosomal, and intra-endosomal budding from membranes, cytokinesis, and related processes have interiors that are contiguous with the cytosol. The severing of these necks involves action from the opposite face of the membrane as compared to the well-characterized coated vesicle pathways, and is referred to as “reverse” or “inverse” topology membrane scission. This process is carried out by the endosomal sorting complexes required for transport (ESCRT) proteins. In particular, the ESCRT-III proteins can form filaments, flat spirals, tubes and conical funnels, which are thought to somehow direct membrane remodeling and scission. Their assembly, and their disassembly by the ATPase VPS4, has been intensively studied, but the mechanism of scission has been elusive. New insights from cryo-electron microscopy and various types of spectroscopy may finally be close to rectifying this situation.
SummaryThe EIN2-mediated senescence signalling pathway coordinates the expression of genes during leaf senescence via the gene regulatory network involving EIN3 and senescence-associated NAC TFs.
Various viologens have been used to control the doping of single-walled carbon nanotubes (SWCNTs) via direct redox reactions. A new method of extracting neutral viologen (V(0)) was introduced using a biphase of toluene and viologen-dissolved water. A reductant of sodium borohydride transferred positively charged viologen (V(2+)) into V(0), where the reduced V(0) was separated into toluene with high separation yield. This separated V(0) solution was dropped on carbon nanotube transistors to investigate the doping effect of CNTs. With a viologen concentration of 3 mM, all the p-type CNT transistors were converted to n-type with improved on/off ratios. This was achieved by donating electrons spontaneously to CNTs from neutral V(0), leaving energetically stable V(2+) on the nanotube surface again. The doped CNTs were stable in water due to the presence of hydrophobic V(0) at the outermost CNT transistors, which may act as a protecting layer to prevent further oxidation from water.
Concepts of non-volatile memory to replace conventional flash memory have suffered from low material reliability and high off-state current, and the use of a thick, rigid blocking oxide layer in flash memory further restricts vertical scale-up. Here, we report a two-terminal floating gate memory, tunnelling random access memory fabricated by a monolayer MoS2/h-BN/monolayer graphene vertical stack. Our device uses a two-terminal electrode for current flow in the MoS2 channel and simultaneously for charging and discharging the graphene floating gate through the h-BN tunnelling barrier. By effective charge tunnelling through crystalline h-BN layer and storing charges in graphene layer, our memory device demonstrates an ultimately low off-state current of 10−14 A, leading to ultrahigh on/off ratio over 109, about ∼103 times higher than other two-terminal memories. Furthermore, the absence of thick, rigid blocking oxides enables high stretchability (>19%) which is useful for soft electronics.
Plant leaves, harvesting light energy and fixing CO 2 , are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total-and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity.Most organisms undergo age-dependent developmental changes during their lifespans. The timely decision of developmental changes during the lifespan is a critical evolutionary characteristic that maximizes fitness in a given ecological setting (Leopold, 1961;Fenner, 1998;Samach and Coupland, 2000). Plants use unique developmental strategies throughout their lifespans as opposed to animals. In plants, most organs are formed postnatally from sets of stem cells in the seed. In addition, plants are sessile and cope with encountering environments physiologically, rather than behaviorally. Thus, they have developed highly plastic and interactive developmental programs to incorporate environmental changes into their developmental decisions (Pigliucci, 1998;Sultan, 2000).The leaf is an organ that characterizes the fundamental aspects of plants. Leaves harvest light energy, fix CO 2 to produce carbohydrates, and, as primary producers in our ecosystem, serve as a major food source on the earth. Leaves undergo a series of developmental and physiological shifts during their lifespans. A leaf is initially formed as a leaf primordium derived from the stem cells at the shoot apical meristem and develops into a photosynthetic organ through biogenesis processes involving cell division, differentiation, and expansion (Tsukaya, 2013). In the later stages of their lifespans, leaves undergo organ-level senescence and eventually death. Organlevel senescence in plants involves postmitotic senescence and is a term used similarly as "aging" in animals. During the senescence stage, leaf cells undergo dramatic shifts in physiology from biogenesis to the sequential 1 This research was supported by the Institute for Basic Science (IBS-R013-D1 and IBS-R013-G1), the DGIST R&D Program (2014010043, 2015010004, 2015010011, 20150100012, and 15-01-HRLA-01), Basic Science Research Program (2010-0...
The endosomal sorting complexes required for transport (ESCRT) machinery functions in HIV-1 budding, cytokinesis, multivesicular body biogenesis, and other pathways, in the course of which it interacts with concave membrane necks and bud rims. To test the role of membrane shape in regulating ESCRT assembly, we nanofabricated templates for invaginated supported lipid bilayers. The assembly of the core ESCRT-III subunit CHMP4B/Snf7 is preferentially nucleated in the resulting 100-nm-deep membrane concavities. ESCRT-II and CHMP6 accelerate CHMP4B assembly by increasing the concentration of nucleation seeds. Superresolution imaging was used to visualize CHMP4B/Snf7 concentration in a negatively curved annulus at the rim of the invagination. Although Snf7 assemblies nucleate slowly on flat membranes, outward growth onto the flat membrane is efficiently nucleated at invaginations. The nucleation behavior provides a biophysical explanation for the timing of ESCRT-III recruitment and membrane scission in HIV-1 budding.membrane bending | HIV-1 | nanofabrication | superresolution imaging
Human adipose tissue-derived mesenchymal stem cells (ASCs) stimulate regeneration of injured tissues by secretion of various cytokines and chemokines. Wound healing is mediated by multiple steps including inflammation, epithelialization, neoangiogenesis, and proliferation. To explore the paracrine functions of ASCs on regeneration of injured tissues, cells were treated with tumor necrosis factor-α (TNF-α), a key inflammatory cytokine, and the effects of TNF-α-conditioned medium (CM) on tissue regeneration were determined using a rat excisional wound model. We demonstrated that TNF-α CM accelerated wound closure, angiogenesis, proliferation, and infiltration of immune cells into the cutaneous wound in vivo. To assess the role of proinflammatory cytokines IL-6 and IL-8, which are included in TNF-α CM, IL-6 and IL-8 were depleted from TNF-α CM using immunoprecipitation. Depletion of IL-6 or IL-8 largely attenuated TNF-α CM-stimulated wound closure, angiogenesis, proliferation, and infiltration of immune cells. These results suggest that TNF-α-activated ASCs accelerate cutaneous wound healing through paracrine mechanisms involving IL-6 and IL-8.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers