Background Colorectal carcinoma (CRC) is one of the most common malignant tumors, and its main cause of death is tumor metastasis. RNA N 6 -methyladenosine (m 6 A) is an emerging regulatory mechanism for gene expression and methyltransferase-like 3 (METTL3) participates in tumor progression in several cancer types. However, its role in CRC remains unexplored. Methods Western blot, quantitative real-time PCR (RT-qPCR) and immunohistochemical (IHC) were used to detect METTL3 expression in cell lines and patient tissues. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and transcriptomic RNA sequencing (RNA-seq) were used to screen the target genes of METTL3. The biological functions of METTL3 were investigated in vitro and in vivo. RNA pull-down and RNA immunoprecipitation assays were conducted to explore the specific binding of target genes. RNA stability assay was used to detect the half-lives of the downstream genes of METTL3. Results Using TCGA database, higher METTL3 expression was found in CRC metastatic tissues and was associated with a poor prognosis. MeRIP-seq revealed that SRY (sex determining region Y)-box 2 (SOX2) was the downstream gene of METTL3. METTL3 knockdown in CRC cells drastically inhibited cell self-renewal, stem cell frequency and migration in vitro and suppressed CRC tumorigenesis and metastasis in both cell-based models and PDX models. Mechanistically, methylated SOX2 transcripts, specifically the coding sequence (CDS) regions, were subsequently recognized by the specific m 6 A “reader”, insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), to prevent SOX2 mRNA degradation. Further, SOX2 expression positively correlated with METTL3 and IGF2BP2 in CRC tissues. The combined IHC panel, including “writer”, “reader”, and “target”, exhibited a better prognostic value for CRC patients than any of these components individually. Conclusions Overall, our study revealed that METTL3, acting as an oncogene, maintained SOX2 expression through an m 6 A-IGF2BP2-dependent mechanism in CRC cells, and indicated a potential biomarker panel for prognostic prediction in CRC. Electronic supplementary material The online version of this article (10.1186/s12943-019-1038-7) contains supplementary material, which is available to authorized users.
Background: Long noncoding RNAs (lncRNAs) play nonnegligible roles in the epigenetic regulation of cancer cells. This study aimed to identify a specific lncRNA that promotes the colorectal cancer (CRC) progression and could be a potential therapeutic target. Methods:We screened highly expressed lncRNAs in human CRC samples compared with their matched adjacent normal tissues. The proteins that interact with LINRIS (Long Intergenic Noncoding RNA for IGF2BP2 Stability) were confirmed by RNA pull-down and RNA immunoprecipitation (RIP) assays. The proliferation and metabolic alteration of CRC cells with LINRIS inhibited were tested in vitro and in vivo.Results: LINRIS was upregulated in CRC tissues from patients with poor overall survival (OS), and LINRIS inhibition led to the impaired CRC cell line growth. Moreover, knockdown of LINRIS resulted in a decreased level of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), a newly found N 6 -methyladenosine (m 6 A) 'reader'. LINRIS blocked K139 ubiquitination of IGF2BP2, maintaining its stability. This process prevented the degradation of IGF2BP2 through the autophagy-lysosome pathway (ALP). Therefore, knockdown of LINRIS attenuated the downstream effects of IGF2BP2, especially MYC-mediated glycolysis in CRC cells. In addition, the transcription of LINRIS could be inhibited by GATA3 in CRC cells. In vivo experiments showed that the inhibition of LINRIS suppressed the proliferation of tumors in orthotopic models and in patient-derived xenograft (PDX) models.Conclusion: LINRIS is an independent prognostic biomarker for CRC. The LINRIS-IGF2BP2-MYC axis promotes the progression of CRC and is a promising therapeutic target.
Long non-coding RNAs (lncRNAs) are involved in the pathology of various tumors, including colorectal cancer (CRC). However, the role of lncRNA in CRC liver metastasis remains unclear. Methods: a microarray was performed to identify the differentially expressed lncRNAs between CRC tissues with and without liver metastasis. Survival analysis was evaluated using the Kaplan-Meier method and assessed using the log-rank test. In vitro and in vivo assays were preformed to explore the biological effects of the differentially expressed lncRNA in CRC cells. Results: the lncRNA UICLM (up-regulated in colorectal cancer liver metastasis) was significantly up-regulated in cases of CRC with liver metastasis. Moreover, UICLM expression was higher in CRC tissues than in normal tissues, and UICLM expression was associated with poor patient survival. Knockdown of UICLM inhibited CRC cell proliferation, invasion, epithelial-mesenchymal transition (EMT) and CRC stem cell formation in vitro as well as tumor growth and liver metastasis in vivo. Ectopic expression of UICLM promoted CRC cell proliferation and invasion. Mechanistic investigations revealed that UICLM induced its biological effects by regulating ZEB2, as the oncogenesis facilitated by UICLM was inhibited by ZEB2 depletion. Further study indicated that UICLM acted as a competing endogenous RNA (ceRNA) for miR-215 to regulate ZEB2 expression. Conclusions: taken together, our findings demonstrate how UICLM induces CRC liver metastasis and may offer a novel prognostic marker and therapeutic target for this disease.
Anoikis is a critical obstacle to cancer metastasis. Colorectal cancer (CRC) exhibits a high rate of metastasis, leading to death, and the mechanisms involved in anoikis resistance are still unclear. We identified that the fatty acid oxidation (FAO) pathway was activated in detached CRC cells. Multiple genes in the FAO pathway, specifically the rate-limiting enzyme CPT1A, were upregulated in CRC cells grown in suspension. Reactive oxygen species elimination mediated by CPT1A in CRC cells was vital to anoikis resistance. In vivo experiments showed that CPT1A-suppressed CRC cells colonized the lung at a much lower rate than normal CRC cells, suggesting that CPT1A-mediated FAO activation increased metastatic capacity. In clinical tissue specimens from CRC patients, elevated expression of CPT1A was observed in metastatic sites compared with primary sites. Our results demonstrate that CPT1A-mediated FAO activation induces CRC cells to resist anoikis, suggesting that CPT1A is an attractive target for treating metastatic CRC.
Side population (SP) cells within tumors are a small fraction of cancer cells with stem-like properties that can be identified by flow cytometry analysis based on their high ability to export certain compounds such as Hoechst 33342 and chemotherapeutic agents. The existence of stem-like SP cells in tumors is considered as a key factor contributing to drug resistance, and presents a major challenge in cancer treatment. Although it has been recognized for some time that tumor tissue niches may significantly affect cancer stem cells (CSCs), the role of key nutrients such as glucose in the microenvironment in affecting stem-like cancer cells and their metabolism largely remains elusive. Here we report that SP cells isolated from human cancer cells exhibit higher glycolytic activity compared to non-SP cells. Glucose in the culture environment exerts a profound effect on SP cells as evidenced by its ability to induce a significant increase in the percentage of SP cells in the overall cancer cell population, and glucose starvation causes a rapid depletion of SP cells. Mechanistically, glucose upregulates the SP fraction through ATP-mediated suppression of AMPK and activation of the Akt pathway, leading to elevated expression of the ATP-dependent efflux pump ABCG2. Importantly, inhibition of glycolysis by 3-BrOP significantly reduces SP cells in vitro and impairs their ability to form tumors in vivo. Our data suggest that glucose is an essential regulator of SP cells mediated by the Akt pathway, and targeting glycolysis may eliminate the drug-resistant SP cells with potentially significant benefits in cancer treatment. Accumulating evidence suggests that tumors of various tissue origins, including the brain, breast, and lung, contain a small subpopulation of special cells with stem-like properties, often referred to as cancer stem cells (CSCs) or tumor-initiating cells. [1][2][3][4][5][6][7] In addition to the ability of CSCs to self-renew and initiate tumor formation, one important biochemical feature of CSCs is their ability to export certain toxic compounds and resistance to many chemotherapeutic agents due in part to their high expression of ATP-dependent efflux pump ABCG2, their increased DNA repair capacity, and activation of survival pathways. [8][9][10] The increase in expression of ABCG2 also confers CSCs the ability to effectively export the DNA-binding dye Hoechst 33342 out of the cells, leading to a low retention of the fluorescent signal in these cells, which appear at the low-left corner in flow cytometry analysis and thus are known as 'side population' or SP cells. 2,11 As SP cells can be readily identified by flow cytometry in a quantitative manner, the measurement of SP cells has been widely used as a quantitative assay for the relative number (%) of stem-like cancer cells in the bulk of the overall cancer cell population. Importantly, as this assay is functionally based on the ability of SP cells to export Hoechst 33342 and certain toxic compounds, it is also a quantitative analysis of the subpopulatio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.