MicroRNAs have been implicated in regulating diverse cellular pathways. Emerging evidence indicates that miR-143 plays causal roles in cancer tumorigenesis as a tumor suppress gene; however, its role in prostate cancer tumorigenesis remains largely unknown. The aims of this study were to verify the effect of miR-143 on proliferation and migration abilities of prostate cancer cells. The expression level of miR-143 and its target gene KRAS were measured by realtime PCR and western blotting, respectively. Effects of miR-143 in cell proliferation, migration and chemosensitivity were evaluated by MTT assay, FACS cell cycle analysis, colony formation assay, and transwell migratory assay. Our results revealed an inverse correlation of expression between miR-143 and KRAS protein in prostate cancer samples (Pearson's correlation scatter plots: R = -0.707, P < 0.05). Moreover, over-expression of miR-143 in prostate cancer cells suppressed their proliferation and migration and increased their sensitivity to docetaxel by targeting EGFR/RAS/MAPK pathway. These findings suggest that miR-143 plays an important role in prostate cancer proliferation, migration and chemosensitivity by suppressing KRAS and subsequent inactivation of MAPK pathway, which provides a potential development of a new approach for the treatment of prostate cancer.
BackgroundCircMYO10 is a circular RNA generated by back-splicing of gene MYO10 and is upregulated in osteosarcoma cell lines, but its functional role in osteosarcoma is still unknown. This study aimed to clarify the mechanism of circMYO10 in osteosarcoma.MethodsCircMYO10 expression in 10 paired osteosarcoma and chondroma tissues was assessed by quantitative reverse transcription polymerase chain reaction (PCR). The function of circMYO10/miR-370-3p/RUVBL1 axis was assessed regarding two key characteristics: proliferation and endothelial–mesenchymal transition (EMT). Bioinformatics analysis, western blotting, real-time PCR, fluorescence in situ hybridization, immunoprecipitation, RNA pull-down assays, luciferase reporter assays, chromatin immunoprecipitation, and rescue experiments were used to evaluate the mechanism. Stably transfected MG63 cells were injected via tail vein or subcutaneously into nude mice to assess the role of circMYO10 in vivo.ResultsCircMYO10 was significantly upregulated, while miR-370-3p was downregulated, in osteosarcoma cell lines and human osteosarcoma samples. Silencing circMYO10 inhibited cell proliferation and EMT in vivo and in vitro. Mechanistic investigations revealed that miR-370-3p targets RUVBL1 directly, and inhibits the interaction between RUVBL1 and β-catenin/LEF1 complex while circMYO10 showed a contrary effect via the inhibition of miR-370-3p. RUVBL1 was found to be complexed with chromatin remodeling and histone-modifying factor TIP60, and lymphoid enhancer factor-1 (LEF1) to promote histone H4K16 acetylation (H4K16Ac) in the vicinity of the promoter region of gene C-myc. Chromatin immunoprecipitation methods showed that miR-370-3p sponge promotes H4K16Ac in the indicated region, which is partially abrogated by RUVBL1 small hairpin RNA (shRNA) while circMYO10 showed a contrary result via the inhibition of miR-370-3p. Either miR-370-3p sponge or ShRUVBL1 attenuated circMYO10-induced phenotypes in osteosarcoma cell lines. MiR-370-3p inhibition abrogated the inhibition of proliferation, EMT of osteosarcoma cells in vitro and in vivo seen upon circMYO10 suppression via Wnt/β-catenin signaling.ConclusionsCircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to promote chromatin remodeling and thus enhances the transcriptional activity of β-catenin/LEF1 complex, which indicates that circMYO10 may be a potential therapeutic target for osteosarcoma treatment.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.