transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.
This paper proposes an on-line sliding mode control allocation scheme for fault tolerant control. The effectiveness level of the actuators is used by the control allocation scheme to redistribute the control signals to the remaining actuators when a fault or failure occurs. The paper provides an analysis of the sliding mode control allocation scheme and determines the nonlinear gain required to maintain sliding. The on-line sliding mode control allocation scheme shows that faults and even certain total actuator failures can be handled directly without reconfiguring the controller. The simulation results show good performance when tested on different fault and failure scenarios.
Abstract-A novel scheme for fault tolerant control is proposed in this paper, in which integral sliding mode ideas are incorporated with control allocation to cope with the total failure of certain actuators, under the assumption that redundancy is available in the system. The proposed scheme uses the effectiveness level of the actuators to redistribute the control signals to healthy actuators without reconfiguring the controller. The effectiveness of the proposed scheme against faults or failures is tested in simulation based on a large transport aircraft model. Index Terms-Fault tolerant control (FTC), linear matrix inequalities (LMIs), integral sliding modes (ISM).
This paper proposes an on-line sliding mode control allocation scheme for fault tolerant control. The effectiveness level of the actuators is used by the control allocation scheme to redistribute the control signals to the remaining actuators when a fault or failure occurs. The paper provides an analysis of the sliding mode control allocation scheme and determines the nonlinear gain required to maintain sliding. The on-line sliding mode control allocation scheme shows that faults and even certain total actuator failures can be handled directly without reconfiguring the controller. The simulation results show good performance when tested on different fault and failure scenarios.
This paper presents a robust FDI scheme using a sliding mode observer based on an LPV system, with fault reconstruction capability. Both actuator and sensor fault reconstruction schemes are considered which possess robustness against a certain class of uncertainty and corrupted measurements. For actuator fault reconstruction, the input distribution matrix (associated with the actuators being monitored) is factorized into fixed and varying components. LMIs are used to design the key observer parameters in order to minimize the effect of uncertainty and measurement corruption on the fault reconstruction signal. The faults are reconstructed using the output error injection signal associated with the nonlinear term of the sliding mode observer. For sensor fault reconstruction, the idea is to re-formulate the problem into an actuator fault reconstruction scenario so that the same design procedure can be applied. This is achieved by augmenting the original system with the filtered sensors being monitored. Simulations using a full nonlinear model of a large transport aircraft are presented, and show good fault reconstruction performance.
Abstract-This paper presents a sliding mode approach for fault tolerant control of a civil aircraft, where both actuator and sensor faults are considered. For actuator faults, a controller is designed around a state-feedback sliding mode scheme where the gain of the nonlinear unit vector term is allowed to adaptively increase at the onset of a fault. Unexpected deviation of the switching variables from their nominal condition triggers the adaptation mechanism. The controller proposed here is relatively simple and yet is shown to work across the entire 'up and away' flight envelope. For sensor faults, the application of a robust method for fault reconstruction using a sliding mode observer is considered. The novelty lies in the application of the sensor fault reconstruction scheme to correct the corrupted measured signals before they are used by the controller and therefore the controller does not need to be reconfigured.
This paper proposes a new method for the analysis and design of sliding mode observers for sensor fault reconstruction. The proposed scheme addresses one of the restrictions inherent in other sliding mode estimation approaches for sensor faults in the literature (which effectively require the open-loop system to be stable). For open-loop unstable systems, examples can be found, for certain combinations of sensor faults, for which existing sliding mode and unknown input linear observer schemes cannot be employed, to reconstruct faults. The method proposed in this paper overcomes these limitations. Simulation results demonstrate the effectiveness of the design framework proposed in the paper.
In this paper a new fault tolerant control scheme is proposed, where only measured system outputs are assumed to be available. The scheme ensures closed-loop stability throughout the entire closed-loop response of the system even in the presence of certain actuator faults/failures. This is accomplished by incorporating ideas of integral sliding modes, unknown input observers and a fixed control allocation scheme. A rigorous closed-loop stability analysis is undertaken, and in fact a convex representation of the problem is created in order to synthesize the controller and observer gains. The efficacy of the proposed scheme is tested by applying it to a benchmark civil aircraft model.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.