BackgroundKidney involvement is a feature of COVID-19 and it can be severe in Black patients. Previous research linked increased susceptibility to collapsing glomerulopathy, including in patients with HIV-associated nephropathy, to apo L1 (APOL1) variants that are more common in those of African descent.MethodsTo investigate genetic, histopathologic, and molecular features in six Black patients with COVID-19 presenting with AKI and de novo nephrotic-range proteinuria, we obtained biopsied kidney tissue, which was examined by in situ hybridization for viral detection and by NanoString for COVID-19 and acute tubular injury–associated genes. We also collected peripheral blood for APOL1 genotyping.ResultsThis case series included six Black patients with COVID-19 (four men, two women), mean age 55 years. At biopsy day, mean serum creatinine was 6.5 mg/dl and mean urine protein-creatinine ratio was 11.5 g. Kidney biopsy specimens showed collapsing glomerulopathy, extensive foot process effacement, and focal/diffuse acute tubular injury. Three patients had endothelial reticular aggregates. We found no evidence of viral particles or SARS-CoV-2 RNA. NanoString showed elevated chemokine gene expression and changes in expression of genes associated with acute tubular injury compared with controls. All six patients had an APOL1 high-risk genotype. Five patients needed dialysis (two of whom died); one partially recovered without dialysis.ConclusionsCollapsing glomerulopathy in Black patients with COVID-19 was associated with high-risk APOL1 variants. We found no direct viral infection in the kidneys, suggesting a possible alternative mechanism: a “two-hit” combination of genetic predisposition and cytokine-mediated host response to SARS-CoV-2 infection. Given this entity’s resemblance with HIV-associated nephropathy, we propose the term COVID-19–associated nephropathy to describe it.
Sirtuin 1 (Sirt1) is a NAD + -dependent deacetylase that exerts many of the pleiotropic effects of oxidative metabolism. Due to local hypoxia and hypertonicity, the renal medulla is subject to extreme oxidative stress. Here, we set out to investigate the role of Sirt1 in the kidney. Our initial analysis indicated that it was abundantly expressed in mouse renal medullary interstitial cells in vivo. Knocking down Sirt1 expression in primary mouse renal medullary interstitial cells substantially reduced cellular resistance to oxidative stress, while pharmacologic Sirt1 activation using either resveratrol or SRT2183 improved cell survival in response to oxidative stress. The unilateral ureteral obstruction (UUO) model of kidney injury induced markedly more renal apoptosis and fibrosis in Sirt1 +/-mice than in wild-type controls, while pharmacologic Sirt1 activation substantially attenuated apoptosis and fibrosis in wild-type mice. Moreover, Sirt1 deficiency attenuated oxidative stress-induced COX2 expression in cultured mouse renal medullary interstitial cells, and Sirt1 +/-mice displayed reduced UUO-induced COX2 expression in vivo. Conversely, Sirt1 activation increased renal medullary interstitial cell COX2 expression both in vitro and in vivo. Furthermore, exogenous PGE 2 markedly reduced apoptosis in Sirt1-deficient renal medullary interstitial cells following oxidative stress. Taken together, these results identify Sirt1 as an important protective factor for mouse renal medullary interstitial cells following oxidative stress and suggest that the protective function of Sirt1 is partly attributable to its regulation of COX2 induction. We therefore suggest that Sirt1 provides a potential therapeutic target to minimize renal medullary cell damage following oxidative stress.
Chronic kidney diseases result from recurrent or progressive injuries in glomeruli, tubules, interstitium and/or vasculature. In order to study pathogenesis, mechanisms and effects of interventions, many animal models have been developed, including spontaneous, genetic and induced models. However, these models do not exactly simulate human diseases, and most of them are strain, gender or age dependent. We review key information on various rodent models of chronic kidney diseases.
The potential and possible mechanisms for regression of existing glomerulosclerosis by angiotensin II type 1 receptor antagonist (AT1RA) and/or angiotensin I converting enzyme inhibitor (ACEI) were investigated. Adult male Sprague Dawley rats underwent 5/6 nephrectomy (Nx). Glomerulosclerosis was assessed by renal biopsy 8 wk later, and rats were divided into groups with equal biopsy sclerosis and treated for the next 4 wk until they were killed at 12 wk as follows: Control with no further treatment (CONT), high-dose AT1RA, high-dose ACEI, and varying AT1RA؉ACEI combinations. Hypertension and proteinuria induced by 5/6 Nx were significantly decreased by all treatments, except high-dose ACEI, which showed persistent proteinuria. High-dose AT1RA and ACEI markedly decreased progression of sclerosis, with ؊2.3% average decrease in sclerosis from biopsy to autopsy in AT1RA versus 194% increase in CONT (P < 0.0001). Glomerulosclerosis regressed, with less severe lesions at the time when the rats were killed than at biopsy in 62% of AT1RA-treated and 57% of ACEI-treated rats. In contrast, only 17 to 33% of rats in combination groups had regression. Alternatively, these data might be viewed as reflecting halting of progression, as some groups had higher BP and proteinuria. However, this potential confounding effect does not negate the effects to achieve regression of sclerosis in these rats. Regression was not explained by changes in mRNA of TGF-1 and matrix metalloproteinase-2 and -9 but was linked to decreased tissue inhibitor of metalloproteinase-1 and plasminogen activator inhibitor-1. It is concluded that angiotensin inhibition mediates regression in part by effects on matrix modulation.
Transforming growth factor-beta1 (TGF-beta1) and the renin-angiotensin-aldosterone system are key mediators in kidney fibrosis. Integrin alphavbeta6, a heterodimeric matrix receptor expressed in epithelia, binds and activates latent TGF-beta1. We used beta6 integrin-null mice (beta6(-/-)) to determine the role of local TGF-beta1 activation in renal fibrosis in the unilateral ureteral obstruction (UUO) model. Obstructed kidneys from beta6(-/-) mice showed less injury than obstructed kidneys from wild-type (WT) mice, associated with lower collagen I, collagen III, plasminogen activator inhibitor (PAI-1), and TGF-beta1 mRNA levels and lower collagen content. Infusion with either angiotensin II (Ang II) or aldosterone (Aldo) or combination in beta6(-/-) UUO mice significantly increased collagen contents to levels comparable to those in identically treated WT. Active TGF-beta protein expression in beta6(-/-) mice was less in UUO kidneys with or without Ang II infusion compared to matched WT mice. Activated Smad 2 levels in beta6(-/-) obstructed kidneys were lower than in WT UUO mice, and did not increase when fibrosis was induced in beta6(-/-) UUO mice by Ang II infusion. Anti-TGF-beta antibody only partially decreased this Ang II-stimulated fibrosis in beta6(-/-) UUO kidneys. In situ hybridization and immunostaining showed low expression of PAI-1 mRNA and protein in tubular epithelium in beta6(-/-) UUO kidneys, with increased PAI-1 expression in response to Ang II, Aldo, or both. Our results indicate that interruption of alphavbeta6-mediated activation of TGF-beta1 can protect against tubulointerstitial fibrosis. Further, the robust induction of tubulointerstitial fibrosis without increase in activated Smad 2 levels in obstructed beta6(-/-) mice by Ang II suggests the existence of a TGF-beta1-independent pathway of induction of fibrosis through angiotensin.
Acute kidney injury (AKI) is a critical condition with a mortality rate as high as 50% and significantly contributes to the burden of end-stage renal disease (ESRD) requiring renal replacement therapy. The incidence and prognosis of AKI have been shown to vary with patient age, with younger individuals being more resistant to AKI. In mice, clamping the renal artery for 45 min causes substantial kidney damage in 4-month-old animals but only mild renal injury in 2-month-old animals. Here, younger mice were found to express higher levels of the NAD(+)-dependent histone deacetylase SIRT1 in the kidney. A small molecule SIRT1 activator, SRT-1720, markedly improved renal tubular pathology and overall renal function in adult mice following ischemia/reperfusion. Genetic ablation of one allele (SIRT1(+/-)) significantly enhanced the level of kidney damage relative to that in wild-type (SIRT1(+/+)) mice. The mechanisms underlying the protective effect of SIRT1 included the suppression of cell apoptosis. Hence, our results suggest that SIRT1 might be a novel therapeutic target for ischemia/reperfusion-induced kidney damage.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers