Granulosa cells of mammalian Graafian follicles maintain oocytes in meiotic arrest, which prevents the precocious maturation. We show that mouse mural granulosa cells, which line the follicle wall, express natriuretic peptide precursor type C, Nppc, mRNA while cumulus cells surrounding oocytes express mRNA of the NPPC receptor NPR2, a guanylyl cyclase. NPPC elevated cGMP levels in cumulus cells and oocytes and inhibited meiotic resumption in vitro. Meiotic arrest was not sustained in most Graafian follicles of Nppc or Npr2 mutant mice, and meiosis resumed precociously. Oocyte-derived paracrine factors promoted cumulus cell expression of Npr2 mRNA. Therefore, the granulosa cell ligand NPPC and its receptor NPR2 in cumulus cells prevent precocious meiotic maturation, which is critical for maturation and ovulation synchrony and for normal female fertility.Meiosis is a germ cell-specific process that reduces the number of chromosomes from the diploid to the haploid number. It begins in human and mouse ovaries during fetal life but meiotic progression becomes arrested for prolonged periods at the diplotene stage of meiotic prophase. Fully-grown mammalian oocytes in Graafian follicles are maintained in meiotic prophase arrest until the preovulatory surge of luteinizing hormone (LH) triggers the resumption of meiosis and ovulation. The mature oocytes (eggs) are then available for fertilization within the oviduct. The somatic cell compartment of Graafian follicles, consisting of mural granulosa cells lining the inside of the follicle wall and cumulus cells surrounding the oocyte, plays a crucial role in maintaining oocyte meiotic arrest in mammals since removal of the oocyte-cumulus cell complex from these follicles results in gonadotropin-independent meiotic resumption in culture (1,2). Cyclic nucleotides cAMP and cGMP are crucial to the maintenance of meiotic arrest. Cyclic AMP is generated within oocytes downstream of GPR3 and GPR12, regulators of Gs proteins controlling adenylyl cyclase (3,4). Inability to sustain oocyte cAMP levels leads to precocious gonadotropinindependent resumption of meiosis, which interrupts the synchrony between oocyte maturation and ovulation and compromises female fertility (3-5). PDE3A, an oocytespecific phosphodiesterase, becomes activated after the LH-surge to decrease cAMP levels in oocytes and thereby initiates pathways governing meiotic resumption (6). Before the LHsurge, cGMP, originating in granulosa cells of the follicular somatic compartment and transferred to the oocyte via gap junctions, inhibits activity of PDE3A in the oocyte (7,8). Therefore, control of cGMP production by granulosa cells is crucial for maintaining meiotic arrest in fully-grown oocytes. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptExploration of the mouse cumulus cell transcriptome for mRNAs encoding guanylyl cyclases using microarray analysis (9) revealed abundant expression of natriuretic peptide receptor 2 (Npr2, also called GC-B) mRNA. The presence of this guanylyl cyc...
The scalable production of hydrogen could conveniently be realized by alkaline water electrolysis. Currently, the major challenge confronting hydrogen evolution reaction (HER) is lacking inexpensive alternatives to platinum-based electrocatalysts. Here we report a high-efficient and stable electrocatalyst composed of ruthenium and cobalt bimetallic nanoalloy encapsulated in nitrogen-doped graphene layers. The catalysts display remarkable performance with low overpotentials of only 28 and 218 mV at 10 and 100 mA cm−2, respectively, and excellent stability of 10,000 cycles. Ruthenium is the cheapest platinum-group metal and its amount in the catalyst is only 3.58 wt.%, showing the catalyst high activity at a very competitive price. Density functional theory calculations reveal that the introduction of ruthenium atoms into cobalt core can improve the efficiency of electron transfer from alloy core to graphene shell, beneficial for enhancing carbon–hydrogen bond, thereby lowing ΔGH* of HER.
An FeCo alloy covered with nitrogen doped graphene is prepared by direct annealing of Fe3[Co(CN)6]2nanoparticles, exhibiting efficient HER catalysis.
SUMMARY Current serologic tests provide the foundation for diagnosis of hepatitis A and hepatitis A virus (HAV) infection. Recent advances in methods to identify and characterize nucleic acid markers of viral infections have provided the foundation for the field of molecular epidemiology and increased our knowledge of the molecular biology and epidemiology of HAV. Although HAV is primarily shed in feces, there is a strong viremic phase during infection which has allowed easy access to virus isolates and the use of molecular markers to determine their genetic relatedness. Molecular epidemiologic studies have provided new information on the types and extent of HAV infection and transmission in the United States. In addition, these new diagnostic methods have provided tools for the rapid detection of food-borne HAV transmission and identification of the potential source of the food contamination.
Naturally occurring CD4+CD25+ regulatory T cells (Treg) exert an important role in mediating maternal tolerance to the fetus during pregnancy, and this effect might be regulated via maternal estrogen secretion. Although estrogen concentration in the pharmaceutical range has been shown to drive expansion of CD4+CD25+ Treg cells, little is known about how and through what mechanisms E2 within the physiological concentration range of pregnancy affects this expansion. Using in vivo and in vitro mouse models in these experiments, we observed that E2 at physiological doses not only expanded Treg cell in different tissues but also increased expression of the Foxp3 gene, a hallmark for CD4+CD25+ Treg cell function, and the IL-10 gene as well. Importantly, our results demonstrate that E2, at physiological doses, stimulated the conversion of CD4+CD25- T cells into CD4+CD25+ T cells which exhibited enhanced Foxp3 and IL-10 expression in vitro. Such converted CD4+CD25+ T cells had similar regulatory function as naturally occurring Treg cells, as demonstrated by their ability to suppress naïve T cell proliferation in a mixed lymphocyte reaction. We also found that the estrogen receptor (ER) exist in the CD4+CD25- T cells and the conversion of CD4+CD25- T cells into CD4+CD25+ T cells stimulated by E2 could be inhibited by ICI182,780, a specific inhibitor of ER(s). This supports that E2 may directly act on CD4+CD25- T cells via ER(s). We conclude that E2 is a potential physiological regulatory factor for the peripheral development of CD4+CD25+ Treg cells during the implantation period in mice.
Electrochemical water splitting is considered as the most promising technology for hydrogen production. Considering overall water splitting for practical applications, catalysis of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) should be performed in the same electrolyte, especially in alkaline solutions. However, designing and searching for highly active and inexpensive electrocatalysts for both OER and HER in basic media remain significant challenges. Herein, we report a facile and universal strategy for synthesizing nonprecious transition metals, binary alloys, and ternary alloys encapsulated in graphene layers by direct annealing of metal–organic frameworks. Density functional theory calculations prove that with an increase in the degree of freedom of alloys or a change in the metal proportions in FeCoNi ternary alloys, the electronic structures of materials can also be tuned intentionally by changing the number of transferred electrons between alloys and graphene. The optimal material alloys FeCo and FeCoNi exhibited remarkable catalytic performance for HER and OER in 1.0 M KOH, reaching a current density of 10 mA cm–2 at low overpotentials of 149 mV for HER and 288 mV for OER. In addition, as an overall alkaline water electrolysis, they were comparable to that of the Pt/RuO2 couple, along with long cycling stability.
Green onions that were apparently contaminated before arrival at the restaurant caused this unusually large foodborne outbreak of hepatitis A. The inclusion of contaminated green onions in large batches that were served to all customers contributed to the size of the outbreak.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers