We continue to uncover a wealth of information connecting microbes in important ways to human and environmental ecology. As our scientific knowledge and technical abilities improve, the tools used for microbiome surveys can be modified to improve the accuracy of our techniques, ensuring that we can continue to identify groundbreaking connections between microbes and the ecosystems they populate, from ice caps to the human body. It is important to confirm that modifications to these tools do not cause new, detrimental biases that would inhibit the field rather than continue to move it forward. We therefore demonstrated that two recently modified primer pairs that target taxonomically discriminatory regions of bacterial and fungal genomic DNA do not introduce new biases when used on a variety of sample types, from soil to human skin. This confirms the utility of these primers for maintaining currently recommended microbiome research techniques as the state of the art.
We show that a citizen science, self-selected cohort shipping samples through the mail at room temperature recaptures many known microbiome results from clinically collected cohorts and reveals new ones. Of particular interest is integrating n = 1 study data with the population data, showing that the extent of microbiome change after events such as surgery can exceed differences between distinct environmental biomes, and the effect of diverse plants in the diet, which we confirm with untargeted metabolomics on hundreds of samples.
Our study, spanning 15 individuals and over 1,200 samples, provides our most comprehensive view to date of storage and stabilization effects on stool. We tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including the types of variation often encountered under field conditions, such as freeze-thaw cycles and high temperature fluctuations. We show that several cost-effective methods provide excellent microbiome stability out to 8 weeks, opening up a range of field studies with humans and wildlife that would otherwise be cost-prohibitive.
A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families known to be produced by the microbiome have a profound impact on the balance between health and disease 1-9. Considering the diversity of the human microbiome, numbering over 40,000 operational taxonomic units 10 , the impact of the microbiome on the chemistry of an entire animal remains underexplored. In this study, mass spectrometry informatics and data visualization approaches 11-13 were used to provide an assessment of the impacts of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free (GF) and specific pathogen Reprints and/or permissions can be provided by R. Quinn or P.C. Dorrestein.
Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.T he process of decay and decomposition in mammalian and other vertebrate taxa is a key step in biological nutrient cycling. Without the action of vertebrate and invertebrate scavengers, bacteria, archaea, fungi, and protists, chemical decomposition of animal waste would proceed extremely slowly and lead to reservoirs of biochemical waste (1). The coevolution of microbial decomposers with the availability of vertebrate corpses over the past 400 million years is expected to result in conservation of key biochemical metabolic pathways and cross-kingdom ecological interactions for efficient recycling of nutrient reserves. Although mammalian corpses likely represent a relatively small component of the detritus pool (2, 3) in most ecosystems, their role in nutrient cycling and community dynamics may be disproportionately large relative to input size, owing to the high nutrient content of corpses (3, 4) and their rapid rates of decomposition [e.g., up to three orders of magnitude faster than plant litter (2)]. These qualities make corpses a distinct and potentially critical driver of terrestrial function (5, 6).When a mammalian body is decomposing, microbial and biochemical activity results in a series of decomposition stages (5) that are associated with a reproducible microbial succession across mice (7), swine (8), and human corpses (9). Yet the microbial metabolism and successional ecology underpinning decomposition are still poorly understood. At present, we do not fully comprehend (i) whether microbial taxa that drive decomposition are ubiquitous across environment, season, and host phylogeny; (ii) whether microbes that drive decomposition derive primarily from the host or from the environment; and (iii) whether the metabolic succession of microbial decomposition is conserved across the physicochemical context of decay and host phylogeny.Several questions arise: Are microbial decomposer communities ubiquitous? What is the origin of the microbial decomposer community? How does mammalian decomposition affect the metabolic capacity of microbial communities? To answer these questions, we used mouse...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.