The binding mode of 3-(4-aroyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamides 1a-c, belonging to a recently reported class of synthetic histone deacetylase (HDAC) inhibitors (Massa, S.; et al. J. Med. Chem. 2001, 44, 2069-2072), into the new modeled HDAC1 catalytic core is presented, and enzyme/inhibitor interactions are discussed. HDAC1 X-ray coordinates were obtained by virtual "mutation" of those of histone deacetylase-like protein, a bacterial HDAC homologue. In in vitro antimaize HD2 as well as antimouse HDAC1 assay, compounds 1a-c showed inhibitory activities in the low micromolar range. Similarly, 1a-c are endowed with anti-HDAC activity in vivo: on mouse A20 cells, 1a-c induced histone hyperacetylation leading to a highly increased acetylation level of H4 as compared to control histones. Results obtained with acid-urea-triton polyacrylamide gel electrophoresis have been confirmed by Western Blot experiments. Finally, compound 1a, chosen as a representative member of this class of HDAC inhibitors, resulted endowed with antiproliferative (45 and 85% cell growth inhibition at 40 and 80 microM, respectively) and cellular differentiation (18 and 21% of benzidine positive cells at the same concentrations) activities in murine erythroleukemic cells.
In order to pass through the microcirculation, red blood cells (RBCs) need to undergo extensive deformations and to recover the original shape. This extreme deformability is altered by various pathological conditions. On the other hand, an altered RBC deformability can have major effects on blood flow and can lead to pathological implications. The study of the viscoelastic response of red blood cells to mechanical stimuli is crucial to fully understand deformability changes under pathological conditions. However, the typical erythrocyte biconcave shape hints to a complex and intrinsically heterogeneous mechanical response that must be investigated by using probes at the nanoscale level. In this work, the local viscoelastic behaviour of healthy and pathological red blood cells was probed by Atomic Force Microscopy (AFM). Our results clearly show that the RBC stiffness is not spatially homogeneous, suggesting a strong correlation with the erythrocyte biconcave shape. Moreover, our nanoscale mapping highlights the key role played by viscous forces, demonstrating that RBCs do not behave as pure elastic bodies. The fundamental role played by viscous forces is further strengthened by the comparison between healthy and pathological (diabetes mellitus) RBCs. It is well known that pathological RBCs are usually stiffer than the healthy ones. Our measures unveil a more complex scenario according to which the difference between normal and pathological red blood cells does not merely lie in their stiffness but also in a different dynamical response to external stimuli that is governed by viscous forces.
Our data provide evidence for a specific HSA-dependent self-defense mechanism against C difficile toxins and provide an explanation for the clinical correlation between CDI severity and hypoalbuminemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.