Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2′-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue.
Open-Source 3D Visualization-Assisted Analysis (Vaa3D) is a software platform for the visualization and analysis of large-scale multidimensional images. In this protocol we describe how to use several popular features of Vaa3D, including (i) multidimensional image visualization, (ii) 3D image object generation and quantitative measurement, (iii) 3D image comparison, fusion and management, (iv) visualization of heterogeneous images and respective surface objects and (v) extension of Vaa3D functions using its plug-in interface. We also briefly demonstrate how to integrate these functions for complicated applications of microscopic image visualization and quantitative analysis using three exemplar pipelines, including an automated pipeline for image filtering, segmentation and surface generation; an automated pipeline for 3D image stitching; and an automated pipeline for neuron morphology reconstruction, quantification and comparison. Once a user is familiar with Vaa3D, visualization usually runs in real time and analysis takes less than a few minutes for a simple data set.
Elucidating the neural pathways that underlie brain function is one of the greatest challenges in neuroscience. Light sheet based microscopy is a cutting edge method to map cerebral circuitry through optical sectioning of cleared mouse brains. However, the image contrast provided by this method is not sufficient to resolve and reconstruct the entire neuronal network. Here we combined the advantages of light sheet illumination and confocal slit detection to increase the image contrast in real time, with a frame rate of 10 Hz. In fact, in confocal light sheet microscopy (CLSM), the out-of-focus and scattered light is filtered out before detection, without multiple acquisitions or any post-processing of the acquired data. The background rejection capabilities of CLSM were validated in cleared mouse brains by comparison with a structured illumination approach. We show that CLSM allows reconstructing macroscopic brain volumes with sub-cellular resolution. We obtained a comprehensive map of Purkinje cells in the cerebellum of L7-GFP transgenic mice. Further, we were able to trace neuronal projections across brain of thy1-GFP-M transgenic mice. The whole-brain high-resolution fluorescence imaging assured by CLSM may represent a powerful tool to navigate the brain through neuronal pathways. Although this work is focused on brain imaging, the macro-scale high-resolution tomographies affordable with CLSM are ideally suited to explore, at micron-scale resolution, the anatomy of different specimens like murine organs, embryos or flies.
BackgroundFurther advances in modern microscopy are leading to teravoxel-sized tiled 3D images at high resolution, thus increasing the dimension of the stitching problem of at least two orders of magnitude. The existing software solutions do not seem adequate to address the additional requirements arising from these datasets, such as the minimization of memory usage and the need to process just a small portion of data.ResultsWe propose a free and fully automated 3D Stitching tool designed to match the special requirements coming out of teravoxel-sized tiled microscopy images that is able to stitch them in a reasonable time even on workstations with limited resources. The tool was tested on teravoxel-sized whole mouse brain images with micrometer resolution and it was also compared with the state-of-the-art stitching tools on megavoxel-sized publicy available datasets. This comparison confirmed that the solutions we adopted are suited for stitching very large images and also perform well on datasets with different characteristics. Indeed, some of the algorithms embedded in other stitching tools could be easily integrated in our framework if they turned out to be more effective on other classes of images. To this purpose, we designed a software architecture which separates the strategies that use efficiently memory resources from the algorithms which may depend on the characteristics of the acquired images.ConclusionsTeraStitcher is a free tool that enables the stitching of Teravoxel-sized tiled microscopy images even on workstations with relatively limited resources of memory (<8 GB) and processing power. It exploits the knowledge of approximate tile positions and uses ad-hoc strategies and algorithms designed for such very large datasets. The produced images can be saved into a multiresolution representation to be efficiently retrieved and processed. We provide TeraStitcher both as standalone application and as plugin of the free software Vaa3D.
Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.
The reconstruction of neuron morphology allows to investigate how the brain works, which is one of the foremost challenges in neuroscience. This process aims at extracting the neuronal structures from microscopic imaging data. The great advances in microscopic technologies have made a huge amount of data available at the micro-, or even lower, resolution where manual inspection is time consuming, prone to error and utterly impractical. This has motivated the development of methods to automatically trace the neuronal structures, a task also known as neuron tracing. This paper surveys the latest neuron tracing methods available in the scientific literature as well as a selection of significant older papers to better place these proposals into context. They are categorized into global processing, local processing and meta-algorithm approaches. Furthermore, we point out the algorithmic components used to design each method and we report information on the datasets and the performance metrics used.
Motivation: Recently, confocal light sheet microscopy has enabled high-throughput acquisition of whole mouse brain 3D images at the micron scale resolution. This poses the unprecedented challenge of creating accurate digital maps of the whole set of cells in a brain.Results: We introduce a fast and scalable algorithm for fully automated cell identification. We obtained the whole digital map of Purkinje cells in mouse cerebellum consisting of a set of 3D cell center coordinates. The method is accurate and we estimated an F1 measure of 0.96 using 56 representative volumes, totaling 1.09 GVoxel and containing 4138 manually annotated soma centers.Availability and implementation: Source code and its documentation are available at http://bcfind.dinfo.unifi.it/. The whole pipeline of methods is implemented in Python and makes use of Pylearn2 and modified parts of Scikit-learn. Brain images are available on request.Contact: paolo.frasconi@unifi.itSupplementary information: Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers