In this article we obtain, in the setting of metric spaces or ordered metric spaces, coincidence point, and common fixed point theorems for self-mappings in a general class of contractions defined by an implicit relation. Our results unify, extend, generalize many related common fixed point theorems from the literature. Mathematics Subject Classification (2000): 47H10, 54H25.
In 2005, Mustafa and Sims (2006) introduced and studied a new class of generalized metric spaces, which are called G-metric spaces, as a generalization of metric spaces. We establish some useful propositions to show that many �xed point theorems on (nonsymmetric) G-metric spaces given recently by many authors follow directly from well-known theorems on metric spaces. Our technique can be easily extended to other results as shown in application.
Motivated by experience from computer science, Matthews (1994) introduced a nonzero self-distance called a partial metric. He also extended the Banach contraction principle to the setting of partial metric spaces. In this paper, we show that fixed point theorems on partial metric spaces (including the Matthews fixed point theorem) can be deduced from fixed point theorems on metric spaces. New fixed point theorems on metric spaces are established and analogous results on partial metric spaces are deduced. MSC: 47H10; 54H25
, introduced and studied the concept of partial metric space, as a part of the study of denotational semantics of dataflow networks. He also obtained a Banach type fixed point theorem on complete partial metric spaces. Very recently Berinde and Vetro, [V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory and Applications 2012, 2012:105], discussed, in the setting of metric and ordered metric spaces, coincidence point and common fixed point theorems for self-mappings in a general class of contractions defined by an implicit relation. In this work, in the setting of partial metric spaces, we study coincidence point and common fixed point theorems for two self-mappings satisfying generalized contractive conditions, defined by implicit relations. Our results unify, extend and generalize some related common fixed point theorems of the literature.
Recently, Samet et al. (2012) introduced the notion ofα-ψ-contractive mappings and established some fixed point results in the setting of complete metric spaces. In this paper, we introduce the notion of weakα-ψ-contractive mappings and give fixed point results for this class of mappings in the setting of partial metric spaces. Also, we deduce fixed point results in ordered partial metric spaces. Our results extend and generalize the results of Samet et al.
Abstract:We discuss, extend, improve and enrich results on simulation functions established by several authors. Furthermore, by using Lemma 2.1 of Radenović et al. [Bull. Iran. Math. Soc., 2012, 38, 625], we get much shorter and nicer proofs than the corresponding ones in the existing literature.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.