RESUMO.-O tipo de alimentação depende do ambiente em que o animal se encontra, sendo este um fator responsável pela alteração da morfologia, como a estratiϐicação e o nível de queratinização da língua, e a funcionalidade da mesma. Dentre as estruturas morfológicas funcionais da língua, as papilas vêm merecendo destaque devido a sua estreita relação com a dieta. Foram utilizadas duas espécies de cervídeos: cinco Mazama gouazoubira e duas Mazama americana, dividindo-se a língua em três partes: ápice, corpo e raiz. Analisou comparativamente a língua de duas espécies por meio de microscopia de The type of feeding is dependent on the environment in which the animal lives, fact that's responsible for changes in morphology such as stratiϐication, level of keratinization and functionality. Among the functional morphological structures of the tongue the papillae are worth mentioning due to their close relation to the diet. Two Cervidae species were used, ϐive Mazama gouazoubira and two Mazama americana. Their tongues were divided into three parts, apex, body and root, and comparatively analyzed by light and scanning electron microscopy. The ϐiliform, fungiform and vallate papillae were present in the two species' tongue and presented the same distribution, differing only in the quantity of vallate papillae on the root of the tongue, fact that might be related to the diet. Moreover, their distribution resembles that of other herbivore species.
This study describes the development of the central nervous system in guinea pigs from 12th day post conception (dpc) until birth. Totally, 41 embryos and fetuses were analyzed macroscopically and by means of light and electron microscopy. The neural tube closure was observed at day 14 and the development of the spinal cord and differentiation of the primitive central nervous system vesicles was on 20th dpc. Histologically, undifferentiated brain tissue was observed as a mass of mesenchymal tissue between 18th and 20th dpc, and at 25th dpc the tissue within the medullary canal had higher density. On day 30 the brain tissue was differentiated on day 30 and the spinal cord filling throughout the spinal canal, period from which it was possible to observe cerebral and cerebellar stratums. At day 45 intumescences were visualized and cerebral hemispheres were divided, with a clear division between white and gray matter in brain and cerebellum. Median sulcus of the dorsal spinal cord and the cauda equina were only evident on day 50. There were no significant structural differences in fetuses of 50 and 60 dpc, and animals at term were all lissencephalic. In conclusion, morphological studies of the nervous system in guinea pig can provide important information for clinical studies in humans, due to its high degree of neurological maturity in relation to its short gestation period, what can provide a good tool for neurological studies.
Rodrigues, F.M., Silva, F.M.O., Trompieri-Silveira, A.C., Vergara-Parente, J.E., Miglino, M.A. and Guimarães, J.P. 2015. Morphology of accessory structures of the humpback whale (Megaptera novaeangliae) eye. -Acta Zoologica (Stockholm) 96: 328-334.The humpback whale (Megaptera novaeangliae) has a cosmopolitan distribution and inhabits coastal and oceanic habitats, being present in polar and tropical waters. In aquatic mammals, vision has an important role in the perception of photoperiod changes. Due to lack of information on the morphology of Mysticetes, this study aimed to provide a morphological description of the adnexal structures of the humpback whale eye. Three newborn female specimens, stranded on the coast of Sergipe, Brazil, were used. Samples were fixed in a 10% formalin solution, dissected and photographed, and all the structures were collected and analysed using different light microscopy techniques. Eyelids were characterized by a palpebral fissure, a palpebral opening, two grooves (dorsal and ventral) and the presence of mechanoreceptors in the dermis. Some fibres of the four recti muscles had palpebral, scleral and glandular insertions. The Harderian gland filled the area between the orbit wall and the eyeball. Two vascular networks separated the extraocular retractor muscle of the eye and surround the optic nerve. The morphology of the accessory structures of the humpback whale eye was similar to that of other cetaceans, which suggests an adaptation to diving during migration, contributing to the perception of temperature difference in different regions.Juliana P. Guimarães, N ucleo de Estudo dos Efeitos Antropogênicos nos Recursos Marinhos/Fundac ßão Mam ıferos Aqu aticos, Av. Tancredo Neves,
Aquatic mammals underwent morphological and physiological adaptations due to the transition from terrestrial to aquatic environment. One of the morphological changes regards their vision since cetaceans' eyes are able to withstand mechanical, chemical, osmotic, and optical water conditions. Due to insufficient information about these animals, especially regarding their sense organs, this study aimed to describe the morphology of the Humpback whale (Megaptera novaeangliae) eyeball. Three newborn females, stranded dead on the coast of Sergipe and Bahia, Brazil, were used. Samples were fixed in a 10% formalin solution, dissected, photographed, collected, and evaluated through light and electron microscopy techniques. The Humpback whale sclera was thick and had an irregular surface with mechanoreceptors in its lamina propria. Lens was dense, transparent, and ellipsoidal, consisting of three layers, and the vascularized choroid contains melanocytes, mechanoreceptors, and a fibrous tapetum lucidum. The Humpback whale eyeball is similar to other cetaceans and suggests an adaptation to diving and migration, contributing to the perception of differences in temperature, pressure, and lighting.
The morphology and location of lymph nodes from seven species of Odontocetes, of both sexes and different age groups, were described. All animals were derived from stranding events along the North and Northeastern coasts of Brazil. After the identification of lymph nodes in situ, tissue samples were analyzed for light and electron microscopy. Vascular volume density (VVD) and vascular length density (VLD) were evaluated in the mesenteric lymph nodes. Lymph nodes occurred as solitary nodules or in groups, varying in shape and size. In addition to using the nomenclature recommended by Nomina Anatomica Veterinaria, new nomenclatures were suggested based on the lymph nodes topography. Lymph nodes were covered by a highly vascularized and innervated capsule of dense connective tissue, below which muscle fibers were observed, inconsistently, in all studied species. There was no difference in VLD among different age groups. However, VVD was higher in adults. Lymph nodes parenchyma was divided into an outer cortex, containing lymph nodules and germinal centers; a paracortical region, transition zone with dense lymphoid tissue; and an inner medulla, composed of small irregular cords of lymphatic tissue, blood vessels, and diffuse lymphoid tissue. Abundant collagen fibers were observed around arteries and arterioles. Germinal centers were more evident and developed in calves and young animals, being more discrete and sparse in adults. The morphology of lymph nodes in Odontocetes was typical of that observed in other terrestrial mammals. However, new groups of lymph nodes were described for seven species occurring in the Brazilian coast. Anat Rec, 297:939-948, 2014. V C 2014 Wiley Periodicals, Inc.
The poultry industry is a sector of agribusiness which represents an important role in the country's agricultural exports. Therefore, the study about embryogenesis of the domestic chicken (Gallus gallus domesticus) has a great economic importance. The aim of this study was to evaluate embryonic development of the endoderm in chicken (Gallus gallus domesticus). Forty fertilized eggs of domestic chickens, starting from the 1st day of gestation and so on until the 19 days of the incubation were collected from the Granja São José (Amparo, SP, Brazil). Embryos and fetus were fixed in 10% formaldehyde solution, identified, weighed, measured, and subjected to light and scanning electron microscopy. The endoderm originates the internal lining epithelium of the digestive, immune, respiratory systems, and the organs can be visualized from the second day (48 h) when the liver is formed. The formation of the digestive system was complete in the 12th day. Respiratory system organs begin at the fourth day as a disorganized tissue and undifferentiated. Their complete differentiation was observed at the 10 days of incubation, however, until the 19 days the syrinx was not observed. The formation of immune system at 10th day was observed with observation of the spleen, thymus, and cloacal bursa. The study of the organogenesis of the chicken based on germ layers is very complex and underexplored, and the study of chicken embryology is very important due the economic importance and growth of the use of this animal model studies such as genetic studies.
Musculoskeletal system development involves heterotypical inductive interactions between tendons, muscles, and cartilage and knowledge on organogenesis is required for clarification of its function. The aim of this study was to describe the organogenesis of horse musculoskeletal system between 21 and 105 days of gestation, using detailed macroscopic and histological analyses focusing on essential developmental steps. At day 21 of gestation the skin was translucid, but epithelial condensation and fibrocartilaginous tissues were observed on day 25 of pregnancy. Smooth muscle was seen in lymphatic and blood vessel walls and the beginning of cartilaginous chondrocranium was detected at day 30 of gestation. At day 45, typical chondroblasts and chondrocytes were observed and at day 55, mandibular processes expanded toward the ventral midline of the pharynx. At day 75, muscles became thicker and muscle fibers were seen developing in carpal and metacarpal joints with the beginning of the ossification process. At day 105, major muscle groups, similar to those seen in an adult equine, were observed. The caudal area of the nasal capsule and trabecular cartilages increased in size and became ossified, developing into the ethmoid bone. The presence of nasal, frontal, parietal, and occipital bones was observed. In conclusion, novel features of equine musculoskeletal system development have been described here and each process was linked with an early musculoskeletal event. Data presented herein will facilitate a better understanding of the equine muscular system organogenesis and aid in the detection of congenital deformities. Anat Rec,
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers