Under the auspices of the Inter-American Metrology System (SIM), the National Institute of Standards and Technology (NIST) initiated a regional comparison for type K thermocouples from (100 to 1,100) • C with 11 participating countries. The use of type K material above approximately 200 • C is considered destructive. Therefore, each participating laboratory was sent new, unused wire from a lot of material characterized by NIST. The uniformity of the lot was remarkable, especially at temperatures above 500 • C; the standard deviation of the thermocouple emf values of multiple cuts tested at NIST was 2.7 µV or less over the full temperature range. The high uniformity eliminated any need to correct for variations of the transfer standard among the laboratories, greatly simplifying the analysis. The level of agreement among the laboratories' results was quite good. Even though test procedures and equipment varied significantly among the participants, the standard deviation of all emf values at each test temperature was less than the equivalent of 0.20 • C at 200 • C and below, and less than 0.60 • C from (400 to 1,100) • C. Of the 380 total bilateral combinations of the
The Large-Sized Telescope (LST) prototype of the future Cherenkov Telescope Array (CTA) is located at the Northern site of CTA, on the Canary Island of La Palma. It is designed to provide optimal performance in the lowest part of the energy range covered by CTA, observing gamma rays down to energies of tens of GeV. The LST prototype started performing astronomical observations in November 2019 during the commissioning of the telescope and it has been taking data since then. In this contribution, we will present the tuning of the characteristics of the telescope in the Monte Carlo (MC) simulations to describe the data obtained, the estimation of its angular and energy resolution, and an evaluation of its sensitivity, both with simulations and with observations of the Crab Nebula.
The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory that is expected to reach one order of magnitude better sensitivity than that of current telescope arrays. The Large-Sized Telescopes (LSTs) have an essential role in extending the energy range down to 20 GeV. The prototype LST (LST-1) proposed for CTA was built in La Palma, the northern site of CTA, in 2018. LST-1 is currently in its commissioning phase and moving towards scientific observations. The LST-1 camera consists of 1855 photomultiplier tubes (PMTs) which are sensitive to Cherenkov light. PMT signals are recorded as waveforms sampled at 1 GHz rate with Domino Ring Sampler version 4 (DRS4) chips. Fast sampling is essential to achieve a low energy threshold by minimizing the integration of background light from the night sky. Absolute charge calibration can be performed by the so-called F-factor method, which allows calibration constants to be monitored even during observations. A calibration pipeline of the camera readout has been developed as part of the LST analysis chain. The pipeline performs DRS4 pedestal and timing corrections, as well as the extraction and calibration of charge and time of pulses for subsequent higher-level analysis. The performance of each calibration step is examined, and especially charge and time resolution of the camera readout are evaluated and compared to CTA requirements. We report on the current status of the calibration pipeline, including the performance of each step through to signal reconstruction, and the consistency with Monte Carlo simulations.
Type K thermocouples are one of the most commonly used temperature sensors in industry. The skills, personnel, and facilities necessary for calibrating type K thermocouples are also applicable to the calibration of other base metal thermocouples, and, to a lesser extent, calibration of platinum–rhodium alloy thermocouples. Under the auspices of the Inter-american Metrology System (SIM), the National Institute of Standards and Technology (NIST) initiated a regional comparison for type K thermocouples from 100 °C to 1100 °C, with 11 participating countries. The use of type K material above approximately 200 °C is considered destructive. Therefore, each participating laboratory was sent new, unused wire from a lot of material characterized by NIST. The uniformity of the lot was remarkable, especially at temperatures above 500 °C; the standard deviation of the thermocouple emf values of multiple cuts tested at NIST was 2.7 µV or less over the full temperature range. The high uniformity eliminated any need to correct for variations of the transfer standard among the laboratories, greatly simplifying the analysis. The level of agreement among the laboratories' results was quite good. Of the 380 total bilateral combinations of the data at the eight test temperatures, only 13 (i.e., 3.4% of all combinations) are outside the k = 2 limits, and of these 13, only 3 are outside k = 3 limits. All of the outliers occur at temperatures of 800 °C and below, which suggests that drift of the type K wire due to high-temperature oxidation did not cause changes in thermocouple emf comparable to or larger than the claimed uncertainties.Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the SIM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.