Aging is characterized by a deterioration in the maintenance of homeostatic processes over time, leading to functional decline and increased risk for disease and death. The aging process is characterized metabolically by insulin resistance, changes in body composition, and physiological declines in growth hormone (GH), insulin-like growth factor-1 (IGF-1), and sex steroids. Some interventions designed to address features of aging, such as caloric restriction or visceral fat depletion, have succeeded in improving insulin action and life span in rodents. Meanwhile, pharmacologic interventions and hormonal perturbations have increased the life span of several mammalian species without necessarily addressing features of age-related metabolic decline. These interventions include inhibition of the mammalian target of rapamycin and lifetime deficiency in GH/IGF-1 signaling. However, strategies to treat aging in humans, such as hormone replacement, have mostly failed to achieve their desired response. We will briefly discuss recent advances in our understanding of the complex role of metabolic pathways in the aging process and highlight important paradoxes that have emerged from these discoveries. Although life span has been the major outcome of interest in the laboratory, a special focus is made in this study on healthspan, as improved quality of life is the goal when translated to humans.
Evidence suggests that the histone deacetylase, SIRT1, is a mediator of life span extension by calorie restriction; however, SIRT1 may paradoxically increase the risk of cancer. To better understand the relationship among SIRT1, energy balance, and cancer, two experiments were done. First, a transgenic mouse model of prostate cancer (transgenic adenocarcinoma of mouse prostate; TRAMP) was used to determine the role of energy balance on SIRT1 expression and the effect of cancer stage on SIRT1 and hypermethylated in cancer-1 (HIC-1). Second, immunohistochemistry was done on human prostate tumors to determine if SIRT1 was differentially expressed in tumor cells versus uninvolved cells. Results show that SIRT1 is not increased in the dorsolateral prostate (DLP) of calorierestricted mice during carcinogenesis. In contrast, when examined in the DLP as a function of pathologic score, SIRT1 was significantly elevated in mice with poorly differentiated adenocarcinomas compared with those with less-advanced disease. HIC-1, which has been shown to regulate SIRT1 levels, was markedly reduced in the same tumors, suggesting that a reduction in HIC-1 may be in part responsible for the increased expression of SIRT1 in prostatic adenocarcinomas. Furthermore, immunostaining of human prostate tumors showed that cancer cells had greater SIRT1 expression than uninvolved cells. In conclusion, DLP SIRT1 expression from calorie-restricted mice was not altered during carcinogenesis. However, SIRT1 expression was increased in mice with poorly differentiated adenocarcinomas and in human prostate cancer cells. Because SIRT1 may function as a tumor promoter, these results suggest that SIRT1 should be considered as a potential therapeutic target for prostate cancer. [Cancer Res 2007;67(14):6612-8]
BackgroundDecline in insulin action is a metabolic feature of aging and is involved in the development of age-related diseases including Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease (AD). A novel mitochondria-associated peptide, Humanin (HN), has a neuroprotective role against AD-related neurotoxicity. Considering the association between insulin resistance and AD, we investigated if HN influences insulin sensitivity.Methods and FindingsUsing state of the art clamp technology, we examined the role of central and peripheral HN on insulin action. Continuous infusion of HN intra-cerebro-ventricularly significantly improved overall insulin sensitivity. The central effects of HN on insulin action were associated with activation of hypothalamic STAT-3 signaling; effects that were negated by co-inhibition of hypothalamic STAT-3. Peripheral intravenous infusions of novel and potent HN derivatives reproduced the insulin-sensitizing effects of central HN. Inhibition of hypothalamic STAT-3 completely negated the effects of IV HN analog on liver, suggesting that the hepatic actions of HN are centrally mediated. This is consistent with the lack of a direct effect of HN on primary hepatocytes. Furthermore, single treatment with a highly-potent HN analog significantly lowered blood glucose in Zucker diabetic fatty rats. Based upon the link of HN with two age-related diseases, we examined if there were age associated changes in HN levels. Indeed, the amount of detectable HN in hypothalamus, skeletal muscle, and cortex was decreased with age in rodents, and circulating levels of HN were decreased with age in humans and mice.ConclusionsWe conclude that the decline in HN with age could play a role in the pathogenesis of age-related diseases including AD and T2DM. HN represents a novel link between T2DM and neurodegeneration and along with its analogues offers a potential therapeutic tool to improve insulin action and treat T2DM.
Mitochondria are key players in aging and in the pathogenesis of age-related diseases. Recent mitochondrial transcriptome analyses revealed the existence of multiple small mRNAs transcribed from mitochondrial DNA (mtDNA). Humanin (HN), a peptide encoded in the mtDNA 16S ribosomal RNA region, is a neuroprotective factor. An in silico search revealed six additional peptides in the same region of mtDNA as humanin; we named these peptides small humanin-like peptides (SHLPs). We identified the functional roles for these peptides and the potential mechanisms of action. The SHLPs differed in their ability to regulate cell viability in vitro. We focused on SHLP2 and SHLP3 because they shared similar protective effects with HN. Specifically, they significantly reduced apoptosis and the generation of reactive oxygen species, and improved mitochondrial metabolism in vitro. SHLP2 and SHLP3 also enhanced 3T3-L1 pre-adipocyte differentiation. Systemic hyperinsulinemic-euglycemic clamp studies showed that intracerebrally infused SHLP2 increased glucose uptake and suppressed hepatic glucose production, suggesting that it functions as an insulin sensitizer both peripherally and centrally. Similar to HN, the levels of circulating SHLP2 were found to decrease with age. These results suggest that mitochondria play critical roles in metabolism and survival through the synthesis of mitochondrial peptides, and provide new insights into mitochondrial biology with relevance to aging and human biology.
Telomere length in humans is emerging as a biomarker of aging because its shortening is associated with aging-related diseases and early mortality. However, genetic mechanisms responsible for these associations are not known. Here, in a cohort of Ashkenazi Jewish centenarians, their offspring, and offspring-matched controls, we studied the inheritance and maintenance of telomere length and variations in two major genes associated with telomerase enzyme activity, hTERT and hTERC. We demonstrated that centenarians and their offspring maintain longer telomeres compared with controls with advancing age and that longer telomeres are associated with protection from age-related diseases, better cognitive function, and lipid profiles of healthy aging. Sequence analysis of hTERT and hTERC showed overrepresentation of synonymous and intronic mutations among centenarians relative to controls. Moreover, we identified a common hTERT haplotype that is associated with both exceptional longevity and longer telomere length. Thus, variations in human telomerase gene that are associated with better maintenance of telomere length may confer healthy aging and exceptional longevity in humans.longevity | heritability | aging | biomarker
The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue (WAT) development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of WAT. Thus, further research is warranted to more carefully define the strengths and limitations of rodent WAT as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat.
SummaryCaloric restriction (CR) can delay many age-related diseases and extend lifespan, while an increase in adiposity is associated with enhanced disease risk and accelerated aging. Among the various fat depots, the accrual of visceral fat (VF) is a common feature of aging, and has been shown to be the most detrimental on metabolic syndrome of aging in humans. We have previously demonstrated that surgical removal of VF in rats improves insulin action; thus, we set out to determine if VF removal affects longevity. We prospectively studied lifespan in three groups of rats: ad libitum -fed (AL-fed), CR (Fed 60% of AL) and a group of AL-fed rats with selective removal of VF at 5 months of age (VF-removed rats). We demonstrate that compared to AL-fed rats, VF-removed rats had a significant increase in mean ( p < < < < 0.001) and maximum lifespan ( p < < < < 0.04) and significant reduction in the incidence of severe renal disease ( p < < < < 0.01). CR rats demonstrated the greatest mean and maximum lifespan ( p < < < < 0.001) and the lowest rate of death as compared to AL-fed rats (0.13). Taken together, these observations provide the most direct evidence to date that a reduction in fat mass, specifically VF, may be one of the possible underlying mechanisms of the antiaging effect of CR. Key words: aging; lifespan; obesity; caloric restriction; visceral fat removal.Caloric restriction (CR) extends lifespan in a variety of species (Weindruch, 1996). In contrast, obesity is a major risk factor for several age-related diseases and has been estimated to markedly lessen life expectancy (Fontaine et al ., 2003). Visceral fat (VF) accretion occurs in obesity and with aging, and a reduction in VF is a common phenotypic change in calorie-restricted mammals (Barzilai & Gupta, 1999). VF has been shown to be the single most important determinant of metabolic syndrome (Carr et al ., 2004), and its removal in rats results in improved insulin action and delays the onset of diabetes Gabriely et al ., 2002). Given the hazards associated with abdominal obesity, it seems plausible that the beneficial effects of CR on longevity may be due at least in part to an attenuation of VF (Barzilai & Gupta, 1999). Here we study the effects of VF removal on the lifespan of rats.We prospectively studied lifespan in three groups of rats: ad libitum -fed (AL-fed), CR (Fed 60% of AL) and a group of AL-fed rats with selective removal of VF at 5 months of age (VF-removed rats). At 20 months of age, a subgroup of animals ( n = 8 per group) were killed to assess body fat distribution. There was no significant difference in body weights among all three groups at the beginning of the study (8 weeks of age) nor were body weights significantly different between AL-fed and VF-removed rats throughout their lifespan (Fig. 1A). However, maximal body weight was achieved at an earlier age in AL-fed rats (69 ± 3 weeks; mean ± SD) than in VF-removed rats (79 ± 3 weeks; p < 0.001), indicating a delay in the age-related weight decline in VF-removed animals. Although V...
Attenuated growth hormone and insulin-like growth factor-1 (GH/IGF-1) signaling is associated with extended lifespan in several animal models. However, the effect of diminished GH/IGF-1 activity on survival in humans has not been confirmed. We tested the hypothesis that IGF-1 levels in nonagenarians (n = 184), measured at study enrollment, predict the duration of their incremental survival. In the Kaplan–Meier analysis, females with IGF-1 levels below the median (≤ 96 ng mL−1) had significantly longer survival compared with females with levels above the median, P < 0.01. However, this survival advantage was not observed in males (P = 0.83). On the other hand, in both males and females with a history of cancer, lower IGF-1 levels predicted longer survival (P < 0.01). IGF-1 level remained a significant predictor of survival duration in linear regression models after multivariable adjustment in females (P = 0.01) and individuals with a history of cancer (P < 0.01). We show for the first time that low IGF-1 levels predict life expectancy in exceptionally long-lived individuals.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers