The millipede family Xystodesmidae includes 486 species distributed primarily in temperate deciduous forests in North America and East Asia. Species diversity of the family is greatest in the Appalachian Mountains of the eastern United States, with 188 species. Although the group includes notable taxa such as those that are bioluminescent and others that display Müllerian mimicry, producing up to 600 mg of cyanide, basic alpha-taxonomy of the group is woefully incomplete and more than 50 species remain undescribed in the Appalachian Mountains alone. In order to establish a robust phylogenetic foundation for addressing compelling evolutionary questions and describing species diversity, we assembled the largest species phylogeny (in terms of species sampling) to date in the Diplopoda. We sampled 49 genera (out of 57) and 247 of the species in the family Xystodesmidae, recollecting fresh material from historical type localities and discovering new species in unexplored regions. Here, we present a phylogeny of the family using six genes (four mitochondrial and two nuclear) and include pivotal taxa omitted from previous studies including Nannaria, Erdelyia, taxa from East Asia, and 10 new species. We show that 6 of the 11 tribes are monophyletic, and that the family is paraphyletic with respect to the Euryuridae and Eurymerodesmidae. Prior supraspecific classification is in part inconsistent with the phylogeny and convergent evolution has caused artificial genera to be proposed. Subspecific classification is likewise incongruent with phylogeny and subspecies are consistently not sister to conspecifics. The phylogeny is used as a basis to update the classification of the family, diagnose monophyletic groups, and to inform species hypotheses.
The millipede Brachycybe lecontii Wood, 1864 is a fungivorous social millipede known for paternal care of eggs and forming multi-generational aggregations. We investigated the life history, paternal care, chemical defence, feeding and social behaviour of B. lecontii and provided morphological and anatomical descriptions, using light and scanning electron microscopy. Based on observations of B. lecontii from 13 locations throughout its distribution, we report the following natural history aspects. The oviposition period of B. lecontii lasted from mid-April to late June and the incubation period lasted 3–4 weeks. Only males cared for the eggs and subsequent care of juveniles was not observed. In one case, the clutches of two males became combined and they were later cared for by only one of the males. The defensive compound of B. lecontii is stored in large glands occupying a third of the paranotal volume and were observed only in stadia II millipedes and older. We observed B. lecontii feeding on fungi of the order Polyporales and describe a cuticular structure on the tip of the labrum that may relate to fungivory. We found that their stellate-shaped aggregations (pinwheels) do not form in the absence of fungus and suggest the aggregation is associated with feeding. We describe and illustrate a previously undescribed comb-like structure on the tibia and tarsi of the six anterior-most leg-pairs and measure the colour and spectral reflectance of the B. lecontii exoskeleton.
The species of the eastern North American millipede genus Pseudopolydesmus are reviewed. Synonyms and comprehensive literature citations are provided for each of the eight recognized species. Diagnostic morphology of the genus, including clarification of male gonopod terminology, is reviewed and defined using scanning electron microscopy and high-quality macrophotographic images, including those in which ultraviolet fluorescence was induced to produce detailed images of morphological structures. Based on the examination of available type material, the following eight species are recognized: (1) Pseudopolydesmus erasus; (2) Pseudopolydesmus canadensis; (3) Pseudopolydesmus collinus; (4) Pseudopolydesmus pinetorum; (5) Pseudopolydesmus minor; (6) Pseudopolydesmus caddo; (7) Pseudopolydesmus paludicolus; and (8) Pseudopolydesmus serratus. The species names Polydesmus neoterus and Polydesmus euthetus are here placed as junior subjective synonyms of Ps. minor (both syn. nov.), and Polydesmus natchitoches is placed as a junior subjective synonym of Ps. pinetorum (syn. nov.).
Millipedes in the family Xystodesmidae (Polydesmida) are often referred to as “colorful, flat-backed millipedes” for their bright aposematic coloration and tendency to form Müllerian mimicry rings in the Appalachian region. However, there are many species of Xystodesmidae that do not display colorful warning patterns, and instead have more cryptic appearances. Perhaps for this reason, groups such as the genus Nannaria have remained understudied, despite containing a large number of undescribed species. Before his death in 2012, R. L. Hoffman worked on a revision of the genus Nannaria, and synthesized material and drawings since 1949. Here the work is continued, inferring a molecular phylogeny of the Nannariini (Nannaria + Oenomaea pulchella), and revealing two clades within the genus. One clade is named the minor species group, and the second is the wilsoni species group. This revision, using a molecular phylogenetic framework, is the basis for descriptions of 35 new species in the minor species group. A multi-gene molecular phylogeny is used to make taxonomic changes in the taxon. Eleven putative species of Nannaria are also illustrated and discussed. Additionally, detailed collection, natural history and habitat notes, distribution maps, and a key to species of the Nannaria minor species group are provided. These items are synthesized as a basis for a revision of the genus, which hopefully will aid conservation and evolutionary investigations of this cryptic and understudied group.
The male of Glyphiulus formosus (Pocock, 1895) is described for the first time based on specimens collected from Shenzhen, Guangdong, China. According to the male sexual characters, this species is verified to be a member of the G. javanicus group. In addition, a DNA barcode of the partial COI gene of G. formosus is provided.
Andrognathus is a genus of small, thin-bodied millipedes found in deciduous forests of North America. Poorly understood, these organisms inhabit decaying wood and have morphologically conserved and difficult-to-identify sexual characters that have limited study historically. Recent use of scanning electron microscopy has uncovered variation in male genitalia that was previously unknown in the genus. The distribution of Andrognathus and the extent of this variability across the continent, however, were undocumented, and a wealth of natural history collections remained uncatalogued. Here a new species of Andrognathus is described from New Mexico, Andrognathusgrubbsisp. n., natural history collections are utilized to create a comprehensive map of the genus, and a neotype established for the type species, Andrognathuscorticarius Cope, 1869. Analysis of the cytochrome oxidase I gene (COI) for A.corticarius was completed for the type series and individuals across the species distribution, but little variation was found. Andrognathusgrubbsisp. n. joins A.corticarius and A.hoffmani Shear & Marek, 2009 as the only members of the genus.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.