Hepatitis delta virus expresses two forms of a single protein, the small (delta Ag-S) and large (delta Ag-L) antigens, which are identical except for an additional 19 residues present at the C terminus of delta Ag-L. While delta Ag-S is required to promote genome replication, delta Ag-L potently inhibits this process and also facilitates packaging of the viral genome by envelope proteins of the helper virus (hepatitis B virus). Regions within the antigens responsible for nuclear localization, RNA binding, and dimerization have been identified, yet it is not clear how these particular activities contribute to the ultimate replication and packaging phenotypes. Here we report the following findings. (i) Although the removal of the nuclear localization signal from either antigen resulted in significant cytoplasmic accumulation, both proteins still had access to the nucleus. As a consequence, no functional defect was observed with either mutant. (ii) The RNA-binding domain, although necessary for delta Ag-S function, could be deleted from delta Ag-L without compromising its ability to either inhibit replication or promote packaging. (iii) In contrast, the coiled-coil dimerization domain was required for both the activation of replication by delta Ag-S and the inhibition of replication by delta Ag-L. This region, with an additional 20 amino acids C-terminal to it, was necessary and sufficient to potently inhibit replication by interacting with the small antigen. (iv) The packaging property of delta Ag-L required a C-terminal Pro/Gly-rich region which is hypothesized to interact with the hepatitis B virus envelope proteins during the assembly process.
The hepatitis delta virus (HDV) genome is a circular, single-stranded, rod-shaped, 1.7-kb RNA that replicates via a rolling-circle mechanism. Viral ribozymes function to cleave replication intermediates which are then ligated to generate the circular product. HDV expresses two forms of a single protein, the small and large delta antigens (&4.g-S and 8Ag-L), which associate with viral RNA in a ribonucleoprotein (RNP) structure. While 8Ag-S is required for RNA replication, 8Ag-L inhibits this process but promotes the assembly of the RNP into mature virions. In this study, we have expressed full-length and deleted HDV RNA inside cells to determine the minimal RNA sequences required for self-cleavage, ligation, RNP packaging, and virion assembly and to assess the role of either delta antigen in each of these processes. We report the following findings. (i) The cleavage and ligation reactions did not require either delta antigen and were not inhibited in their presence. (ii) BAg-L, in the absence of 8Ag-S, formed an RNP with HDV RNA which could be assembled into secreted virus-like particles. (iii) Full-length HDV RNAs were stabilized in the presence of either delta antigen and accumulated to much higher levels than in their absence. (iv) As few as 348 nucleotides of HDV RNA were competent for circle formation, RNP assembly, and incorporation into virus-like particles. (v) An HDV RNA incapable of folding into the rod-like structure was not packaged by 8Ag-L.
It has been shown previously that during replication of the genome of human hepatitis delta virus (HDV), a specific nucleotide change occurs to eliminate the termination codon for the small delta antigen (G. Luo, M.
The circular RNA genome of hepatitis delta virus (HDV) can fold into an unbranched rodlike structure. We mutagenized the two ends of this structure and assayed the effects on the ability of the genomes to replicate and accumulate processed RNA transcripts in transfected cells. The top end, defined as that nearest to the 5 end of the putative mRNA for delta antigen, was much more sensitive than the other end, defined as the bottom. Most of the 22 mutants made at the bottom were able to accumulate RNA as well as the wild type. For deletions extending as close as 2 nucleotides (nt) from the predicted domains needed for the two ribozymes, the accumulation levels dropped to <0.1%. In one mutant, 13 nt of HDV was replaced with 57 nt of non-HDV sequences, and accumulation was at 20% of the wild-type level, consistent with the potential of HDV to act as a vector. However, after replacement with a second sequence, accumulation dropped to 1%. For most of the 14 mutants made at the top of the rod, we observed dramatic inhibitory effects. For example, after removal of 3 bp from the stem adjacent to the terminal loop, accumulation dropped to <0.06% of the wild-type genome level. The top region that we considered was adjacent to both the 5 end of the putative mRNA and the domain that has been proposed to contain a promoter for RNA-directed RNA synthesis. The RNA accumulation abilities of certain mutants were tested under additional different experimental conditions. It was found that after longer times, some mutants began to catch up with the wild type. Also, it was found that certain top mutants gave much greater levels of accumulation when transfected into cells containing the small delta antigen. One interpretation of these data is that certain features at the top of the rod are needed for the accumulation of essential delta antigen mRNA species.
During replication, a ribozyme within the genomic RNA of hepatitis delta virus cleaves multimeric precursors to release a unit-length linear intermediate. Intramolecular ligation of this intermediate produces the circular genomic RNA. Although one copy of the ribozyme is reconstituted by such ligation, it does not subsequently cleave and destroy the circular conformation. We have identified cis-acting attenuator sequences that prevent self-cleavage of the circular product by base pairing with and inactivating the ribozyme. Furthermore, we have shown that during the initial processing of the multimeric precursor RNA, host-specific factors activate the ribozyme by preventing its association with the attenuator sequences. Thus, we demonstrate a novel switching mechanism that regulates ribozyme activity inside the cell.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.