When rabbit peritoneal neutrophils were treated with glucocorticoids, their chemotactic response to stimulation by the chemoattractant fMet-Leu-Phe was markedly reduced. Preincubation of cells with glucocorticoids also decreased phospholipase A2 (phosphatide 2-acylhydrolase, EC 3.1.1.4) activity in situ as measured by the release of [l-14C- Glucocorticoids exhibit a variety of biological effects, such as enzyme induction and anti-inflammatory actions (1, 2). The steroids act as a consequence of their binding to cytoplasmic receptors, followed by the translocation of the ligand-receptor complex into the nucleus, which, in turn, affects the transcription of various RNA species (3). The anti-inflammatory action of glucocorticoids is expressed in their ability to inhibit both chemotaxis and release of lysosomal enzymes in phagocytic cells (4-6). Recently, it has been demonstrated that chemotactic peptides enhance the release of arachidonic acid, a product of phospholipase A2 (phosphatide 2-acylhydrolase, EC 3.1.1.4), in rabbit neutrophils (7). Steroids possibly exert their anti-inflammatory action by preventing the release of arachidonic acid from phospholipids and its conversion to prostaglandins (8). These observations prompted a search for a steroid-induced inhibitor of phospholipase A2 in neutrophils. Here, we report the existence of a protein in rabbit neutrophils that inhibits phospholipase A2 and whose synthesis is induced by glucocorticoids.METHODS AND MATERIALS Assay of Phospholipase A2 Activities in Situ and in Vitro. Rabbit peritoneal neutrophils were obtained as described (7) and treated with various glucocorticoids in RPMI 1640 medium (GIBCO) for 16 hr at 37°C under a humid atmosphere of 95% 02/5% CO2. Phospholipase A2 activity was measured by the release of ["4C]arachidonic acid from the cellular lipids, mainly phospholipids, with a slight modification of the method described (7). Bovine serum albumin (1%) was included in Gey's balanced salt solution buffered with 10 mM Hepes, pH 7.4 (modified Gey's buffer). The cells (8-11 X 106 cells per ml) were preincubated in a total volume of 5 ml with 1.25 ,uCi of [1-'4C]arachidonic acid (55.5 mCi/mmol) at 370C for 1 hr (1 Ci = 3.7 X 1010 becquerels). The cells were washed twice with 5 ml of modified Gey's buffer and resuspended in 5 ml of the same buffer. For arachidonic acid release, the cells were stimulated with 10 nM fMet-Leu-Phe for 10 min at 370C (7). 16 hr. After three washings with 0.84% NaCl solution buffered with 10 mM sodium phosphate buffer, pH 7.4, the cells (8 X 106 cells) were lysed in 3 ml of distilled water. After centrifugation, at 27,000 X g for 50 min, the precipitates were solubilized with 0.5 ml of 2% Nonidet P40. Samples (0.5 ml) of
2533The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. §1734 solely to indicate this fact.
The ErbB receptors and their cognate ligands that belong to the epidermal growth factor (EGF) family of peptides are involved in the pathogenesis of different types of carcinomas. In fact, the ErbB receptors and the EGF-like growth factors are frequently expressed in human tumors. These proteins form a complex system that regulates the proliferation and the survival of cancer cells. Therefore, ErbB receptors and their ligands might represent suitable targets for novel therapeutic approaches in human carcinomas. In this regard, different target-based agents that are directed against the ErbB receptors have been developed in the past two decades. One of these compounds, the humanized anti-ErbB-2 monoclonal antibody trastuzumab has been approved for the treatment of patients with metastatic breast cancer. The anti-EGF receptor (EGFR) antibody C225, as well as EGFR tyrosine kinase inhibitors ZD1839 and OSI-774 are currently in phase III clinical development. Several other ErbB tyrosine kinase inhibitors are in phase I/II studies. These compounds have generally been shown to have an acceptable toxicity profile and promising anti-tumor activity in heavily pretreated patients. The mechanisms of action of these compounds, as well as the potential therapeutic strategies to improve their efficacy are discussed in this review with particular regard to the combinations of anti-ErbB agents with cytotoxic drugs, or combinations of different ErbB-targeting agents.
This review article provides an overview on the most recent advances on the role of ErbB receptors and growth factors of the epidermal growth factor (EGF)-family of peptides in cancer pathogenesis and progression. The ErbB tyrosine kinases and the EGF-like peptides form a complex system. In fact, the interactions occurring between receptors and ligands of these families affect the type and the duration of the intracellular signals that derive from receptor activation. Interestingly, activation of ErbB receptors is also driven by different classes of membrane receptor, suggesting that ErbB kinases can amplify growth promoting signals carried by different pathways. The importance of ErbB receptors and EGF-like peptides in development of organs and tissues has been demonstrated by using different mouse models. In vitro and in vivo studies have also shown that ErbB receptors and their ligands can act as transforming genes. However, evidence suggests that cooperation of different receptors and ligands is necessary to induce a fully transformed phenotype. Indeed, co-expression of different ErbB receptors and EGF-like growth factors is a common phenomenon in human primary carcinomas. This observation suggests that the growth and the survival of carcinoma cells is sustained by a network of receptors/ligands of the ErbB family. In this respect, the contemporary expression of different ErbB tyrosine kinases and/or EGF-like growth factors in human carcinomas might also affect tumor response to target based agents directed against the ErbB receptor/ligand system.
It is increasingly evident that genes known to perform critical roles during early embryogenesis, particularly during stem cell renewal, pluripotentiality and survival, are also expressed during the development of cancer. In this regard, oncogenesis may be considered as the recapitulation of embryogenesis in an inappropriate temporal and spatial manner. The epidermal growth factor-Cripto-1/FRL1/cryptic family of proteins consists of extracellular and cell-associated proteins that have been identified in several vertebrate species. During early embryogenesis, epidermal growth factor-Cripto-1/FRL1/ cryptic proteins perform an obligatory role as coreceptors for the transforming growth factor-beta subfamily of proteins, which includes Nodal. Cripto-1 has also been shown to function as a ligand through a Nodal/Alk4-independent signaling pathway that involves binding to glypican-1 and the subsequent activation through src of phosphoinositol-3 kinase/Akt and ras/mitogen-activated protein kinase intracellular pathways. Expression of Cripto-1 is increased in several human cancers and its overexpression is associated with the development of mammary tumors in mice. Here, we review the role of Cripto-1 during embryogenesis, cell migration, invasion and angiogenesis and how these activities may relate to cellular transformation and tumorigenesis. We also briefly discuss evidence suggesting that Cripto-1 may be involved in stem cell maintenance.
Cripto-1 is critical for early embryonic development and, together with its ligand Nodal, has been found to be associated with the undifferentiated status of mouse and human embryonic stem cells. Like other embryonic genes, Cripto-1 performs important roles in the formation and progression of several types of human tumors, stimulating cell proliferation, migration, epithelial to mesenchymal transition, and tumor angiogenesis. Several studies have demonstrated that cell fate regulation during embryonic development and cell transformation during oncogenesis share common signaling pathways, suggesting that uncontrolled activation of embryonic signaling pathways might drive cell transformation and tumor progression in adult tissues. Here we review our current understanding of how Cripto-1 controls stem cell biology and how it integrates with other major embryonic signaling pathways. Because many cancers are thought to derive from a subpopulation of cancer stem-like cells, which may re-express embryonic genes, Cripto-1 signaling may drive tumor growth through the generation or expansion of tumor initiating cells bearing stem-like characteristics. Therefore, the Cripto-1/Nodal signaling may represent an attractive target for treatment in cancer, leading to the elimination of undifferentiated stem-like tumor initiating cells.
Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5′-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.