BackgroundBartter and Gitelman syndromes are autosomal recessive disorders of renal tubular salt handling. Due to their rarity, limited long-term data are available to inform prognosis and management.MethodsLong-term longitudinal data were analysed for 45 children with pathogenic variants in SLC12A1 (n = 8), KCNJ1 (n = 8), CLCNKB (n = 17), BSND (n = 2) and SLC12A3 (n = 10) seen at a single centre between 1984 and 2014. Median follow-up was 8.9 [interquartile range (IQR) 0.7–18.1] years.ResultsPolyhydramnios and prematurity were seen in children with SLC12A1 and KCNJ1 mutations. Patients with CLCNKB mutations had the lowest serum potassium and serum magnesium and the highest serum bicarbonate levels. Fractional excretion of chloride was >0.5% in all patients prior to supplementation. Nephrocalcinosis at presentation was present in the majority of patients with SLC12A1 and KCNJ1 mutations, while it was only present in one patient with CLCNKB and not in SLC12A3 or BSND mutations. Growth was impaired, but within the normal range (median height standard deviation score −1.2 at the last follow-up). Impaired estimated glomerular filtration rate (eGFR <90 mL/min/1.73 m2) at the last follow-up was seen predominantly with SLC12A1 [71 mL/min/1.73 m2 (IQR 46–74)] and KCNJ1 [62 mL/min/1.73 m2 (IQR 48–72)] mutations. Pathological albuminuria was detected in 31/45 children.ConclusionsPatients with Bartter and Gitelman syndromes had a satisfactory prognosis during childhood. However, decreased eGFR and pathologic proteinuria was evident in a large number of these patients, highlighting the need to monitor glomerular as well as tubular function. Electrolyte abnormalities were most severe in CLCNKB mutations both at presentation and during follow-up. Fractional excretion of chloride prior to supplementation is a useful screening investigation in children with hypokalaemic alkalosis to establish renal salt wasting.
The clinical diagnosis of inherited renal tubulopathies can be challenging as they are rare and characterized by significant phenotypic variability. Advances in sequencing technologies facilitate the establishment of a molecular diagnosis. Therefore, we determined the diagnostic yield of a next generation sequencing panel assessing relevant disease genes in children followed through three national networks with a clinical diagnosis of a renal tubulopathy. DNA was amplified with a kit provided by the European Consortium for High-Throughput Research in Rare Kidney Diseases with nine multiplex PCR reactions. This kit produced 571 amplicons covering 37 genes associated with tubulopathies followed by massive parallel sequencing and bioinformatic interpretation. Identified mutations were confirmed by Sanger sequencing. Overall, 384 index patients and 16 siblings were assessed. Most common clinical diagnoses were 174 patients with Bartter/Gitelman syndrome and 76 with distal renal tubular acidosis. A total of 269 different variants were identified in 27 genes, of which 95 variants were considered likely, 136 definitely pathogenic and 100 had not been described at annotation. These mutations established a genetic diagnosis in 245 of the index patients. Genetic testing changed the clinical diagnosis in 16 cases and provided insights into the phenotypic spectrum of the respective disorders. Our results demonstrate a high diagnostic yield of genetic testing in children with a clinical diagnosis of a renal tubulopathy, consistent with a predominantly genetic etiology in known disease genes. Thus, genetic testing helped establish a definitive diagnosis in almost two-thirds of patients thereby informing prognosis, management and genetic counseling.
General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. We propose that the promoter mutation alters tissue-specific chromatin loop formation with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. Our findings extend the spectrum of genetic 5 causes for both HI and PKD and provide insights into gene regulation and PMM2 pleiotropy.6
Long term follow-up from this large dRTA cohort shows an overall favourable outcome with normal adult height for most and no patient with CKD 5. Yet, 82% of adult patients have CKD 2-4. Importance of adequate metabolic control was highlighted by better growth and renal function but was achieved in only half of patients.
For many patients with kidney failure, the cause and underlying defect remain unknown. Here, we describe a novel mechanism of a genetic order characterized by renal Fanconi syndrome and kidney failure. We clinically and genetically characterized members of five families with autosomal dominant renal Fanconi syndrome and kidney failure. We performed genome-wide linkage analysis, sequencing, and expression studies in kidney biopsy specimens and renal cells along with knockout mouse studies and evaluations of mitochondrial morphology and function. Structural studies examined the effects of recognized mutations. The renal disease in these patients resulted from monoallelic mutations in the gene encoding glycine amidinotransferase (GATM), a renal proximal tubular enzyme in the creatine biosynthetic pathway that is otherwise associated with a recessive disorder of creatine deficiency. analysis showed that the particular mutations, identified in 28 members of the five families, create an additional interaction interface within the GATM protein and likely cause the linear aggregation of GATM observed in patient biopsy specimens and cultured proximal tubule cells. GATM aggregates-containing mitochondria were elongated and associated with increased ROS production, activation of the NLRP3 inflammasome, enhanced expression of the profibrotic cytokine IL-18, and increased cell death. In this novel genetic disorder, fully penetrant heterozygous missense mutations in trigger intramitochondrial fibrillary deposition of GATM and lead to elongated and abnormal mitochondria. We speculate that this renal proximal tubular mitochondrial pathology initiates a response from the inflammasome, with subsequent development of kidney fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.