This paper presents results of searches for the electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139 fb −1 of ffiffi ffi s p ¼ 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low-transverse-momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of R-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino, or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented.
The ATLAS CollaborationThis letter describes the observation of the light-by-light scattering process, γγ → γγ, in Pb+Pb collisions at √ s NN = 5.02 TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb −1 , collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy E γ T > 3 GeV and pseudorapidity |η γ | < 2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 ± 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is 78 ± 13 (stat.) ± 7 (syst.) ± 3 (lumi.) nb.Light-by-light scattering, γγ → γγ, is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics [1, 2]. In the Standard Model (SM), the γγ → γγ reaction proceeds at one-loop level at order α 4 (where α is the fine-structure constant) via virtual box diagrams involving electrically charged fermions (leptons and quarks) or W ± bosons. However, in various extensions of the SM, extra contributions are possible, making the measurement of γγ → γγ scattering sensitive to new physics. Relevant examples are magnetic monopoles [3], vector-like fermions [4] and axion-like particles [5,6]. The light-by-light cross section is also sensitive to the effect of possible non-SM operators in an effective field theory [7][8][9]. Light-by-light scattering graphs with electron loops also contribute to the anomalous magnetic moment of the electron and muon [10,11].Strong evidence for this process in relativistic heavy-ion (Pb+Pb) collisions at the Large Hadron Collider (LHC) has been reported by the ATLAS [12] and CMS [13] collaborations with observed significances of 4.4 and 4.1 standard deviations, respectively. Exclusive light-by-light scattering can occur in these collisions at impact parameters larger than about twice the radius of the ions, as demonstrated for the first time in Ref. [14]. The strong interaction becomes less significant and the electromagnetic (EM) interaction becomes more important in these ultraperipheral collision (UPC) events. In general, this allows to study processes involving nuclear photoexcitation, photoproduction of hadrons, and two-photon interactions [15,16]. The EM fields produced by the colliding Pb nuclei can be described as a beam of quasi-real photons with a small virtuality of Q 2 < 1/R 2 , where R is the radius of the charge distribution and so Q 2 < 10 −3 GeV 2 [17, 18]. The cross section for the elastic reaction Pb+Pb (γγ) → Pb+Pb γγ can then be calculated by convolving the appropriate photon flux with the elementary cross section for the process γγ → γγ. Since the photon flux associated with each nucleus scales with the square of the number of protons, the cross section is strongl...
Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for the ATLAS experiment to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena in both proton-proton and heavy-ion collisions. To cope with a fourfold increase of peak LHC luminosity from 2015 to 2018 (Run 2), to 2.1 × 10 34 cm −2 s −1 , and a similar increase in the number of interactions per beamcrossing to about 60, trigger algorithms and selections were optimised to control the rates while retaining a high efficiency for physics analyses. For proton-proton collisions, the single-electron trigger efficiency relative to a single-electron offline selection is at least 75% for an offline electron of 31 GeV, and rises to 96% at 60 GeV; the trigger efficiency of a 25 GeV leg of the primary diphoton trigger relative to a tight offline photon selection is more than 96% for an offline photon of 30 GeV. For heavy-ion collisions, the primary electron and photon trigger efficiencies relative to the corresponding standard offline selections are at least 84% and 95%, respectively, at 5 GeV above the corresponding trigger threshold.
This paper describes the measurements of flow harmonics v 2-v 6 in 3 μb −1 of Xe + Xe collisions at √ s NN = 5.44 TeV performed using the ATLAS detector at the Large Hadron Collider (LHC). Measurements of the centrality, multiplicity, and p T dependence of the v n obtained using two-particle correlations and the scalar product technique are presented. The measurements are also performed using a template-fit procedure, which was developed to remove nonflow correlations in small collision systems. This nonflow removal is shown to have a significant influence on the measured v n at high p T , especially in peripheral events. Comparisons of the measured v n with measurements in Pb + Pb collisions and p + Pb collisions at √ s NN = 5.02 TeV are also presented. The v n values in Xe + Xe collisions are observed to be larger than those in Pb + Pb collisions for n = 2, 3, and 4 in the most central events. However, with decreasing centrality or increasing harmonic order n, the v n values in Xe + Xe collisions become smaller than those in Pb + Pb collisions. The v n in Xe + Xe and Pb + Pb collisions are also compared as a function of the mean number of participating nucleons, N part , and the measured charged-particle multiplicity in the detector. The v 3 values in Xe + Xe and Pb + Pb collisions are observed to be similar at the same N part or multiplicity, but the other harmonics are significantly different. The ratios of the measured v n in Xe + Xe and Pb + Pb collisions, as a function of centrality, are also compared to theoretical calculations.
This paper presents a measurement of quantities related to the formation of jets from high-energy quarks and gluons (fragmentation). Jets with transverse momentum 100 GeV < p T < 2.5 TeV and pseudorapidity jηj < 2.1 from an integrated luminosity of 33 fb −1 of ffiffi ffi s p ¼ 13 TeV proton-proton collisions are reconstructed with the ATLAS detector at the Large Hadron Collider. Charged-particle tracks with p T > 500 MeV and jηj < 2.5 are used to probe the detailed structure of the jet. The fragmentation properties of the more forward and the more central of the two leading jets from each event are studied. The data are unfolded to correct for detector resolution and acceptance effects. Comparisons with parton shower Monte Carlo generators indicate that existing models provide a reasonable description of the data across a wide range of phase space, but there are also significant differences. Furthermore, the data are interpreted in the context of quark-and gluon-initiated jets by exploiting the rapidity dependence of the jet flavor fraction. A first measurement of the charged-particle multiplicity using model-independent jet labels (topic modeling) provides a promising alternative to traditional quark and gluon extractions using input from simulation. The simulations provide a reasonable description of the quark-like data across the jet p T range presented in-this measurement, but the gluon-like data have systematically fewer charged particles than the simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.