Wheat is one of the world’s most important sources of food. However, due to its evolution its genetic base has narrowed, which is severely limiting the ability of breeders to develop new higher yielding varieties that can adapt to the changing environment. In contrast to wheat, its wild relatives provide a vast reservoir of genetic variability for most, if not all, agronomically important traits. Genetic variation has previously been transferred to wheat from one of its wild relatives, Ambylopyrum muticum (previously known as Aegilops mutica). However, before the genetic variation available in this species can be assessed and exploited in breeding and for research, the transmission of the chromosome segments introgressed into wheat must first be stabilized. In this paper we describe the generation of 66 stably inherited homozygous wheat/Am. muticum introgression lines using a doubled haploid procedure. The characterisation and stability of each of these lines was determined via genomic in situ hybridization and SNP analysis. While most of the doubled haploid lines were found to carry only single introgressions, six lines carried two. Three lines carried only complete Am. muticum chromosomes, 43 carried only small or very small introgressions and the remainder carried either only large introgressions or a large plus a small introgression. The strategy that we are employing for the distribution and exploitation of the genetic variation from Am. muticum and a range of other species is discussed.
Wheat is one of the most important food and protein sources in the world and although, in recent years wheat breeders have achieved yield gains, they are not sufficient to meet the demands of an ever-growing population. Development of high yielding wheat varieties, resilient to abiotic and biotic stress resulting from climate change, has been limited by wheat’s narrow genetic base. In contrast to wheat, the wild relatives of wheat provide a vast reservoir of genetic variation for most, if not all, agronomic traits. Previous studies by the authors have shown the transfer of genetic variation from T. urartu into bread wheat. However, before the introgression lines can be exploited for trait analysis, they are required to have stable transmission of the introgressions to the next generation. In this work, we describe the generation of 86 doubled haploid (DH) wheat-T. urartu introgression lines that carry homozygous introgressions which are stably inherited. The DH lines were characterised using the Axiom® Wheat Relative Genotyping Array and 151 KASP markers to identify 65 unique T. urartu introgressions in a bread wheat background. DH production has helped accelerate the breeding process and facilitated the early release of homozygous wheat-T. urartu introgression lines. Together with the KASP markers, this valuable resource could greatly advance identification of beneficial alleles that can be used in wheat improvement.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers