Purpose Currently, the most commonly used chelator for labelling antibodies with 89 Zr for immunoPET is desferrioxamine B (DFO). However, preclinical studies have shown that the limited in vivo stability of the 89 Zr-DFO complex results in release of 89 Zr, which accumulates in mineral bone. Here we report a novel chelator DFOcyclo*, a preorganized extended DFO derivative that enables octacoordination of the 89 Zr radiometal. The aim was to compare the in vitro and in vivo stability of [ 89 Zr]Zr-DFOcyclo*, [ 89 Zr]Zr-DFO* and [ 89 Zr]Zr-DFO. Methods The stability of 89 Zr-labelled chelators alone and after conjugation to trastuzumab was evaluated in human plasma and PBS, and in the presence of excess EDTA or DFO. The immunoreactive fraction, IC 50 , and internalization rate of the conjugates were evaluated using HER2-expressing SKOV-3 cells. The in vivo distribution was investigated in mice with subcutaneous HER2 + SKOV-3 or HER2 − MDA-MB-231 xenografts by PET/CT imaging and quantitative ex vivo tissue analyses 7 days after injection. Results 89 Zr-labelled DFO, DFO* and DFOcyclo* were stable in human plasma for up to 7 days. In competition with EDTA, DFO* and DFOcyclo* showed higher stability than DFO. In competition with excess DFO, DFOcyclo*-trastuzumab was significantly more stable than the corresponding DFO and DFO* conjugates ( p < 0.001). Cell binding and internalization were similar for the three conjugates. In in vivo studies, HER2 + SKOV-3 tumour-bearing mice showed significantly lower bone uptake ( p < 0.001) 168 h after injection with [ 89 Zr]Zr-DFOcyclo*-trastuzumab (femur 1.5 ± 0.3%ID/g, knee 2.1 ± 0.4%ID/g) or [ 89 Zr]Zr-DFO*-trastuzumab (femur 2.0 ± 0.3%ID/g, knee 2.68 ± 0.4%ID/g) than after injection with [ 89 Zr]Zr-DFO-trastuzumab (femur 4.5 ± 0.6%ID/g, knee 7.8 ± 0.6%ID/g). Blood levels, tumour uptake and uptake in other organs were not significantly different at 168 h after injection. HER2 − MDA-MB-231 tumour-bearing mice showed significantly lower tumour uptake ( p < 0.001) after injection with [ 89 Zr]Zr-DFOcyclo*-trastuzumab (16.2 ± 10.1%ID/g) and [ 89 Zr]Zr-DFO-trastuzumab (19.6 ± 3.2%ID/g) than HER2 + SKOV-3 tumour-bearing mice (72.1 ± 14.6%ID/g and 93.1 ± 20.9%ID/g, respectively), while bone uptake was similar. Conclusion 89 Zr-labelled DFOcyclo* and DFOcyclo*-trastuzumab...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.