IMPORTANCESkin cancer is the most common malignancy occurring after organ transplantation. Although previous research has reported an increased risk of skin cancer in solid organ transplant recipients (OTRs), no study has estimated the posttransplant population-based incidence in the United States. OBJECTIVE To determine the incidence and evaluate the risk factors for posttransplant skin cancer, including squamous cell carcinoma (SCC), melanoma (MM), and Merkel cell carcinoma (MCC) in a cohort of US OTRs receiving a primary organ transplant in 2003 or 2008. DESIGN, SETTING, AND PARTICIPANTS This multicenter retrospective cohort study examined 10 649 adult recipients of a primary transplant performed at 26 centers across the United States in the Transplant Skin Cancer Network during 1 of 2 calendar years (either 2003 or 2008) identified through the Organ Procurement and Transplantation Network (OPTN) database. Recipients of all organs except intestine were included, and the follow-up periods were 5 and 10 years.MAIN OUTCOMES AND MEASURES Incident skin cancer was determined through detailed medical record review. Data on predictors were obtained from the OPTN database. The incidence rates for posttransplant skin cancer overall and for SCC, MM, and MCC were calculated per 100 000 person-years. Potential risk factors for posttransplant skin cancer were tested using multivariate Cox regression analysis to yield adjusted hazard ratios (HR).RESULTS Overall, 10 649 organ transplant recipients (mean [SD] age, 51 [12] years; 3873 women [36%] and 6776 men [64%]) contributed 59 923 years of follow-up. The incidence rates for posttransplant skin cancer was 1437 per 100 000 person-years. Specific subtype rates for SCC, MM, and MCC were 812, 75, and 2 per 100 000 person-years, respectively. Statistically significant risk factors for posttransplant skin cancer included pretransplant skin cancer (
Ion gels composed of a copolymer and a room temperature ionic liquid are versatile solid-state electrolytes with excellent features including high ionic conductivity, nonvolatility, easily tunable mechanical properties, good flexibility and solution processability. Ion gels can be functionalized by incorporating redox-active species such as electrochemiluminescent (ECL) luminophores or electrochromic (EC) dyes. Here, we enhance the functionality of EC gels for realizing multicolored EC devices (ECDs), either by controlling the chemical equilibrium between a monomer and dimer of a colored EC species, or by modifying the molecular structures of the EC species. All devices in this work are conveniently fabricated by a "cut-and-stick" strategy, and require very low power for maintaining the colored state [i.e., 90 μW/cm(2) (113 μA/cm(2) at -0.8 V) for blue, 4 μW/cm(2) (10 μA/cm(2) at -0.4 V) for green, and 32 μW/cm(2) (79 μA/cm(2) at -0.4 V) for red ECD]. We also successfully demonstrate a patterned, multicolored, flexible ECD on plastic. Overall, these results suggest that gel-based ECDs have significant potential as low power displays in printed electronics powered by thin-film batteries.
Owing to the mixed electron/hole and ion transport in the aqueous environment, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based organic electrochemical transistor has been regarded as one of the most promising device platforms for bioelectronics. Nonetheless, there exist very few in-depth studies on how intrinsic channel material properties affect their performance and long-term stability in aqueous environments. Herein, we investigated the correlation among film microstructural crystallinity/composition, device performance, and aqueous stability in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films. The highly organized anisotropic ordering in crystallized conducting polymer films led to remarkable device characteristics such as large transconductance (∼20 mS), extraordinary volumetric capacitance (113 F·cm−3), and unprecedentedly high [μC*] value (∼490 F·cm−1V−1s−1). Simultaneously, minimized poly(styrenesulfonate) residues in the crystallized film substantially afforded marginal film swelling and robust operational stability even after >20-day water immersion, >2000-time repeated on-off switching, or high-temperature/pressure sterilization. We expect that the present study will contribute to the development of long-term stable implantable bioelectronics for neural recording/stimulation.
Graphene micro‐supercapacitors (MSCs) are an attractive energy storage technology for powering miniaturized portable electronics. Despite considerable advances in recent years, device fabrication typically requires conventional microfabrication techniques, limiting the translation to cost‐effective and high‐throughput production. To address this issue, we report here a self‐aligned printing process utilizing capillary action of liquid inks in microfluidic channels to realize scalable, high‐fidelity manufacturing of graphene MSCs. Microstructured ink receivers and capillary channels are imprinted on plastic substrates and filled by inkjet printing of functional materials into the receivers. The liquid inks move under capillary flow into the adjoining channels, allowing reliable patterning of electronic materials in complex structures with greatly relaxed printing tolerance. Leveraging this process with pristine graphene and ion gel inks, miniaturized all‐solid‐state graphene MSCs are demonstrated to concurrently achieve outstanding resolution (active footprint: <1 mm2, minimum feature size: 20 µm) and yield (44/44 devices), while maintaining a high specific capacitance (268 µF cm–2) and robust stability to extended cycling and bending, establishing an effective route to scale down device size while scaling up production throughput.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.