ObjectivesAnemia is a common complication of malignancy, which could result from either compromised erythropoiesis or decreased lifespan of circulating erythrocytes. Premature suicidal erythrocyte death, characterized by cell shrinkage and phosphatidylserine (PS) externalization, decreases erythrocyte lifespan and could thus cause anemia. Here, we explored whether accelerated eryptosis participates in the pathophysiology of anemia associated with lung cancer (LC) and its treatment.MethodsErythrocytes were drawn from healthy volunteers and LC patients with and without cytostatic treatment. PS exposure (annexin V-binding), cell volume (forward scatter), cytosolic Ca2+ (Fluo3 fluorescence), reactive oxygen species (ROS) production (DCFDA fluorescence) and ceramide formation (anti-ceramide antibody) were determined by flow cytometry.ResultsHemoglobin concentration and hematocrit were significantly lower in LC patients as compared to healthy controls, even though reticulocyte number was higher in LC (3.0±0.6%) than in controls (1.4±0.2%). The percentage of PS-exposing erythrocytes was significantly higher in LC patients with (1.4±0.1%) and without (1.2±0.3%) cytostatic treatment as compared to healthy controls (0.6±0.1%). Erythrocyte ROS production and ceramide abundance, but not Fluo3 fluorescence, were significantly higher in freshly drawn erythrocytes from LC patients than in freshly drawn erythrocytes from healthy controls. PS exposure of erythrocytes drawn from healthy volunteers was significantly more pronounced following incubation in plasma from LC patients than following incubation in plasma from healthy controls.ConclusionAnemia in LC patients with and without cytostatic treatment is paralleled by increased eryptosis, which is triggered, at least in part, by increased oxidative stress and ceramide formation.
The TNF receptor family member OX40 promotes activation and proliferation of T cells, which fuels efforts to modulate this immune checkpoint to reinforce antitumor immunity. Besides T cells, NK cells are a second cytotoxic lymphocyte subset that contributes to antitumor immunity, particularly in leukemia. Accordingly, these cells are being clinically evaluated for cancer treatment through multiple approaches, such as adoptive transfer of expanded polyclonal NK cells (pNKC). Here, we analyzed whether and how OX40 and its ligand (OX40L) influence NK-cell function and antileukemia reactivity. We report that OX40 is expressed on leukemic blasts in a substantial percentage of patients with acute myeloid leukemia (AML) and that OX40 can, after stimulation with agonistic OX40 antibodies, mediate proliferation and release of cytokines that act as growth and survival factors for the leukemic cells. We also demonstrate that pNKC differentially express OX40L, depending on the protocol used for their generation. OX40L signaling promoted NK-cell activation, cytokine production, and cytotoxicity, and disruption of OX40-OX40L interaction impaired pNKC reactivity against primary AML cells. Together, our data implicate OX40/OX40L in disease pathophysiology of AML and in NK-cell immunosurveillance. Our findings indicate that effects of the OX40-OX40L receptor-ligand system in other immune cell subsets and also malignant cells should be taken into account when developing OX40-targeted approaches for cancer immunotherapy..
NK cells play an important role in tumor immunosurveillance and largely contribute to the therapeutic success of anti-tumor antibodies like Rituximab. Here, we studied the role of the TNF family member 4-1BB ligand (4-1BBL) during the interaction of NK cells with chronic lymphocytic leukemia (CLL) cells. 4-1BBL was highly expressed on patient B-CLL cells in all 56 investigated cases. Signaling via 4-1BBL following interaction with 4-1BB, which was detected on NK cells of CLL patients but not healthy individuals, led to the release of immunoregulatory cytokines including TNF by CLL cells. CLL patient sera contained elevated levels of TNF and induced 4-1BB upregulation on NK cells, which in turn impaired direct and Rituximab-induced NK-cell reactivity against 4-1BBL-expressing targets. NK-cell reactivity was not only enhanced by blocking the interaction of NK cell-expressed 4-1BB with 4-1BBL expressed by CLL cells, but also by preventing 4-1BB upregulation on NK cells via neutralization of TNF in patient serum with Infliximab. Our data indicate that 4-1BBL mediates NK-cell immunosubversion in CLL, and thus might contribute to the reportedly compromised efficacy of Rituximab to induce NK-cell reactivity in the disease, and that TNF neutralization may serve to enhance the efficacy of Rituximab treatment in CLL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.