SummaryBackgroundThere is pre-clinical evidence that general anaesthetics affect brain development. There is mixed evidence from cohort studies that young children exposed to anaesthesia may have an increased risk of poorer neurodevelopmental outcome. This trial aims to determine if GA in infancy has any impact on neurodevelopmental outcome. The primary outcome for the trial is neurodevelopmental outcome at 5 years of age. The secondary outcome is neurodevelopmental outcome at two years of age and is reported here.MethodsWe performed an international assessor-masked randomised controlled equivalence trial in infants less than 60 weeks post-menstrual age, born at greater than 26 weeks gestational age having inguinal herniorrhaphy. Infants were excluded if they had existing risk factors for neurologic injury. Infants were randomly assigned to awake-regional (RA) or sevoflurane-based general anaesthesia (GA). Web-based randomisation was performed in blocks of two or four and stratified by site and gestational age at birth. The outcome for analysis was the composite cognitive score of the Bayley Scales of Infant and Toddler Development, Third Edition. The analysis was as-per-protocol adjusted for gestational age at birth. A difference in means of five points (1/3 SD) was predefined as the clinical equivalence margin. The trial was registered at ANZCTR, ACTRN12606000441516 and ClinicalTrials.gov, NCT00756600.FindingsBetween February 2007, and January 2013, 363 infants were randomised to RA and 359 to GA. Outcome data were available for 238 in the RA and 294 in the GA arms. The median duration of anaesthesia in the GA arm was 54 minutes. For the cognitive composite score there was equivalence in means between arms (RA-GA: +0·169, 95% CI −2·30 to +2·64).InterpretationFor this secondary outcome we found no evidence that just under an hour of sevoflurane anaesthesia in infancy increases the risk of adverse neurodevelopmental outcome at two years of age compared to RA.
Trans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013 – a non-drought year – Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated “very unhealthy”). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5–10% of Indonesia's mean annual GHG emissions for 2000–2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.
Climate change can be addressed by mitigation (reducing the sources or enhancing the sinks of greenhouse gases) and adaptation (reducing the impacts of climate change). Mitigation and adaptation present two fundamentally dissimilar approaches whose differences are now well documented. Forest ecosystems play an important role in both adaptation and mitigation and there is a need to explore the linkages between these two options in order to understand their trade-offs and synergies. In forests, potential trade-offs can be observed between global ecosystem services, such as the carbon sequestration relevant for mitigation, and the local ecosystem services that are relevant for adaptation. In addition, mitigation projects can facilitate or hinder the adaptation of local people to climate change, whereas adaptation projects can affect ecosystems and their potential to sequester carbon. Linkages between adaptation and mitigation can also be observed in policies, but few climate change or forest policies have addressed these linkages in the forestry sector. This paper presents examples of linkages between adaptation and mitigation in Latin American forests. Through case studies, we investigate the approaches and reasons for integrating adaptation into mitigation projects or mitigation into OPEN ACCESSForests 2011, 2 432adaptation projects. We also analyze the opportunities for mainstreaming adaptation-mitigation linkages into forest or climate change policies.
Ecosystems provide important services that can help people adapt to climate variability and change. Recognizing this role of ecosystems, several international and nongovernmental organizations have promoted an ecosystem-based approach to adaptation. We review the scientific literature related to ecosystem-based adaptation (EBA) with forests and trees, and highlight five cases in which forests and trees can support adaptation: (1) forests and trees providing goods to local communities facing climatic threats; (2) trees in agricultural fields regulating water, soil, and microclimate for more resilient production; (3) forested watersheds regulating water and protecting soils for reduced climate impacts; (4) forests protecting coastal areas from climate-related threats; and (5) urban forests and trees regulating temperature and water for resilient cities. The literature provides evidence that EBA with forests and trees can reduce social vulnerability to climate hazards; however, uncertainties and knowledge gaps remain, particularly for regulating services in watersheds and coastal areas. Few studies have been undertaken on EBA specifically, but the abundant literature on ecosystem services can be used to fill knowledge gaps. Many studies assess the multiple benefits of ecosystems for human adaptation or well-being, but also recognize trade-offs between ecosystem services. Better understanding is needed of the efficiency, costs, and benefits, and trade-offs of EBA with forests and trees. Pilot projects under implementation could serve as learning sites and existing information could be systematized and revisited with a climate change adaptation lens. 2012 John Wiley & Sons, Ltd. How to cite this article:WIREs Clim Change 2012Change , 3:581-596. doi: 10.1002 INTRODUCTIONC limate change will affect human well-being in many parts of the world 1 and effective adaptation is needed even under the most stringent mitigation * Correspondence to: e. 2 The role of ecosystem goods and services in societal adaptation to climate variability and change has received renewed recognition. Ecosystem-based adaptation (EBA) is an anthropocentric approach, in which ecosystem services are conserved or restored to reduce the vulnerability of people facing climate change threats. 3,4 Ecosystem services are the benefits people obtain from ecosystems and can be classified as provisioning services (e.g., timber and firewood), regulating services (e.g., water regulation), and cultural services (e.g., recreation). 5 Examples of EBA include the restoration of mangrove shelterbelts for the protection of coastal settlements against storms and waves and the conservation of forested watersheds for the reduction of flood risk. Many international and nongovernmental conservation and development organizations have promoted EBA by stressing its effectiveness in reducing social vulnerability, its cost-efficiency, and its co-benefits for biodiversity conservation, poverty reduction, and climate change mitigation. [6][7][8][9][10][11][12] However, the ...
As Healthy soils provide a wide range of ecosystem services. But soil erosion (one component of land degradation) jeopardizes the sustainable delivery of these services worldwide, and particularly in the humid tropics where erosion potential is high due to heavy rainfall. The Millennium Ecosystem Assessment pointed out the role of poor land-use and management choices in increasing land degradation. We hypothesized that land use has a limited influence on soil erosion provided vegetation cover is developed enough or good management practices are implemented. We systematically reviewed the literature to study how soil and vegetation management influence soil erosion control in the humid tropics. More than 3600 measurements of soil loss from 55 references covering 21 countries were compiled. Quantitative analysis of the collected data revealed that soil erosion in the humid tropics is dramatically concentrated in space (over landscape elements of bare soil) and time (e.g. during crop rotation). No land use is erosion-prone per se, but creation of bare soil elements in the landscape through particular land uses and other human activities (e.g. skid trails and logging roads) should be avoided as much as possible. Implementation of sound practices of soil and vegetation management (e.g. contour planting, no-till farming and use of vegetative buffer strips) can reduce erosion by up to 99%. With limited financial and technical means, natural resource managers and policy makers can therefore help decrease soil loss at a large scale by promoting wise management of highly erosion-prone landscape elements and enhancing the use of low-erosion-inducing practices. (Résumé d'auteur
In developing countries where economies and livelihoods depend largely on ecosystem services, policies for adaptation to climate change should take into account the role of these services in increasing the resilience of society. This ecosystem-based approach to adaptation was the focus of an international workshop on "Adaptation to Climate Change: the role of Ecosystem Services" held in November 2008 in Costa Rica. This article presents the key messages from the workshop.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers