The long terminal repeat (LTR) regulates gene expression of HIV-1 by interacting with multiple host and viral factors. Cross-sectional studies in the pre-HAART era demonstrated that single nucleotide polymorphisms (SNPs) in peripheral blood-derived LTRs (a C-to-T change at position 3 of C/EBP site I (3T) and at position 5 of Sp site III (5T)) increased in frequency as disease severity increased. Additionally, the 3T variant correlated with HIV-1-associated dementia. LTR sequences derived by longitudinal sampling of peripheral blood from a single patient in the DrexelMed HIV/AIDS Genetic Analysis Cohort resulted in the detection of the 3T and 5T coselected SNPs before the onset of neurologic impairment, demonstrating that these SNPs may be useful in predicting HIV-associated neurological complications. The relative fitness of the LTRs containing the 3T and/or 5T co-selected SNPs as they evolve in their native patient-derived LTR backbone structure demonstrated a spectrum of basal and Tat-mediated transcriptional activities using the IIIB-derived Tat and colinear Tat derived from the same molecular clone containing the 3T/5T LTR SNP. In silico predictions utilizing colinear envelope sequence suggested that the patient's virus evolved from an X4 to an R5 swarm prior to the development of neurological complications and more advanced HIV disease. These results suggest that the HIV-1 genomic swarm may evolve during the course of disease in response to selective pressures that lead to changes in prevalence of specific polymorphisms in the LTR, env, and/or tat that could predict the onset of neurological disease and result in alterations in viral function.
The adaptation of human immunodeficiency virus type-1 (HIV-1) to an array of physiologic niches is advantaged by the plasticity of the viral genome, encoded proteins, and promoter. CXCR4-utilizing (X4) viruses preferentially, but not universally, infect CD4+ T cells, generating high levels of virus within activated HIV-1-infected T cells that can be detected in regional lymph nodes and peripheral blood. By comparison, the CCR5-utilizing (R5) viruses have a greater preference for cells of the monocyte-macrophage lineage; however, while R5 viruses also display a propensity to enter and replicate in T cells, they infect a smaller percentage of CD4+ T cells in comparison to X4 viruses. Additionally, R5 viruses have been associated with viral transmission and CNS disease and are also more prevalent during HIV-1 disease. Specific adaptive changes associated with X4 and R5 viruses were identified in co-linear viral sequences beyond the Env-V3. The in silico position-specific scoring matrix (PSSM) algorithm was used to define distinct groups of X4 and R5 sequences based solely on sequences in Env-V3. Bioinformatic tools were used to identify genetic signatures involving specific protein domains or long terminal repeat (LTR) transcription factor sites within co-linear viral protein R (Vpr), trans-activator of transcription (Tat), or LTR sequences that were preferentially associated with X4 or R5 Env-V3 sequences. A number of differential amino acid and nucleotide changes were identified across the co-linear Vpr, Tat, and LTR sequences, suggesting the presence of specific genetic signatures that preferentially associate with X4 or R5 viruses. Investigation of the genetic relatedness between X4 and R5 viruses utilizing phylogenetic analyses of complete sequences could not be used to definitively and uniquely identify groups of R5 or X4 sequences; in contrast, differences in the genetic diversities between X4 and R5 were readily identified within these co-linear sequences in HIV-1-infected patients.
The large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs) contained within the viral promoter or long terminal repeat (LTR) in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter)/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count).
Background This study evaluated the relationship between illicit drug use and HIV-1 disease severity in HIV-1-infected patients enrolled in the DrexelMed HIV/AIDS Genetic Analysis Cohort. Since, cocaine is known to have immunomodulatory effects, the cytokine profiles of preferential nonusers, cocaine users, and multidrug users were analyzed to understand the effects of cocaine on cytokine modulation and HIV-1 disease severity. Methods Patients within the cohort were assessed approximately every 6 months for HIV-1 clinical markers and for history of illicit drug, alcohol, and tobacco use. The Luminex human cytokine 30-plex panel was used for cytokine quantitation. Analysis was performed using a newly developed biostatistical model. Results Substance abuse was common within the cohort. Utilizing the drug screens at the time of each visit, the subjects in the cohort were categorized as preferential nonusers, cocaine users, or multidrug users. The overall health of the nonuser population was better than that of the cocaine users, with peak and current viral loads in nonusers substantially lower than those in cocaine and multidrug users. Among the 30 cytokines investigated, differential levels were established within the 3 populations. The T-helper 2 cytokines, interleukin-4 and -10, known to play a critical role during HIV-1 infection, were positively associated with increasing cocaine use. Clinical parameters such as latest viral load, CD4+ T-cell counts, and CD4:CD8 ratio were also significantly associated with cocaine use, depending on the statistical model used. Conclusions Based on these assessments, cocaine use appears to be associated with more severe HIV-1 disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.