Microsporidia are ubiquitous fungi-related parasites infecting nearly all vertebrates and invertebrates. Microsporidian Nosema bombycis is a natural pathogen of multiple insects, including the silkworm and many agricultural and forest pests. N. bombycis can transovarially transmit in silkworm and cause huge economic losses to the sericulture. However, it remains unclear whether N. bombycis vertically transmits in the crop pests Spodoptera litura and Helicoverpa armigera. Here, we investigated the infection of N. bombycis in S. litura and H. armigera to illuminate its infectivity and transovarial transmission. In result, tissue examination with light microscopy revealed that the fat body, midgut, malpighian tubules, hemolymph, testis, and ovary were all infected in both pest pupae. Immunohistochemical analysis (IHA) of the ovariole showed that a large number of parasites in maturation and proliferation presented in follicle cell, nurse cell, and oocyte, suggesting that N. bombycis can infect and multiply in these cells and probably transovarially transmit to the next generations in both pests. Microscopic examination on the egg infection rate demonstrated that 50% and 38% of the S. litura and H. armigera eggs were congenitally infected, respectively. IHA of both eggs manifested numerous spores and proliferative pathogens in the oocyte, confirming that N. bombycis can invade into the female germ cell from the parent body. After hatching of the infected eggs, we detected the infection in offspring larvae and found large quantities of proliferative pathogens, confirming that N. bombycis can transovarially transmit in S. litura and H. armigera, and probably persists in both pest populations via congenital infection. In summary, our work, for the first time, proved that N. bombycis is able to vertically transmit in S. litura and H. armigera via infecting the oocyte in the parent, suggesting that N. bombycis could be a biological insecticide for controlling the population of crop pests.
Background: Microsporidia, a group of obligate intracellular parasites that can infect humans and nearly all animals, have lost the pathways for de novo amino acid, lipid and nucleotide synthesis and instead evolved strategies to manipulate host metabolism and immunity. The endoplasmic reticulum (ER) is a vital organelle for producing and processing proteins and lipids and is often hijacked by intracellular pathogens. However, little is known about how microsporidia modulate host ER pathways. Herein, we identified a secreted protein of Encephalitozoon hellem, EhHNTP1, and characterized its subcellular localization and functions in host cells.Methods: A polyclonal antibody against EhHNTP1 was produced to verify the protein subcellular localization in E. hellem-infected cells using indirect immunofluorescence assay (IFA) and Western blotting. HEK293 cells were transfected with wild-type or mutant EhHNTP1 fused with HA-EGFP, and the impacts on pathogen proliferation, protein subcellular localization and sequence functions were assessed. RNA sequencing of EhHNTP1-transfected cells was conducted to identify differentially expressed genes (DEGs) and pathway responses by bioinformatics analysis mainly with R packages. The DEGs in the transfected cells were experimentally confirmed with RT-qPCR and Western blotting. The regulatory effects of candidate DEGs were analyzed via RNA interference and cell transfection, and the effects were determined with RT-qPCR and Western blotting.Results: EhHNTP1 is secreted into the host nucleus, and its translocation depends on a nuclear localization signal sequence (NLS) at the C-terminus from amino acids 239 to 250. Transfection and overexpression of EhHNTP1 in HEK293 cells significantly promoted pathogen proliferation. RNA-seq of the transfected cells showed that genes involved in ER-associated degradation (ERAD), a quality control mechanism that allows for the targeted degradation of proteins in the ER, were prominently upregulated. Upregulation of the ERAD genes PDIA4, HERP, HSPA5 and Derlin3 determined by RNA-seq data was verified using RT-qPCR and Western blotting. Protein ubiquitination in the transfected cells was then assayed and found to be markedly increased, confirming the activation of ERAD. PDIA4 knockdown with RNAi significantly suppressed the expression of HERP, indicating that PDIA4 is a vital ERAD component exploited by EhHNTP1. Moreover, EhHNTP1ΔHRD, a deletion mutant lacking the histidine-rich domain (HRD) in the C-terminus, predominantly suppressed the upregulation of ERAD genes, indicating that the HRD is essential for EhHNTP1 functions.Conclusion: This study is the first report on a microsporidian secretory protein that targets the host nucleus to upregulate the ERAD pathway and subsequently promote protein ubiquitination. Our work provides new insights into microsporidia-host interactions.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers