Pneumonia is an infection in one or both the lungs because of virus or bacteria through breathing air. It inflames air sacs in lungs which fill with fluid which further leads to problems in respiration. Pneumonia is interpreted by radiologists by observing abnormality in lungs in case of fluid in Chest X-Rays. Computer Aided Detection Diagnosis (CAD) tools can assist radiologists by improving their diagnostic accuracy. Such CAD tools use neural networks which are trained on Chest X-Ray dataset to classify a Chest X-Ray into normal or infected with Pneumonia. Convolution neural networks have shown remarkable performance in object detection in an image. Quaternion Convolution neural network (QCNN) is a generalization of conventional convolution neural networks. QCNN treats all three channels (R, G, B) of color image as a single unit and it extracts better representative features and which further improves classification. In this paper, we have trained Quaternion residual network on a publicly available large Chest X-Ray dataset on Kaggle repository and obtained classification accuracy of 93.75% and F-score of .94. We have also compared our performance with other CNN architectures. We found that classification accuracy was higher with Quaternion Residual network when we compared it with a real valued Residual network.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers