The construction of classical hierarchical B-splines can be suitably modified in order to define locally supported basis functions that form a partition of unity. We will show that this property can be obtained by reducing the support of basis functions defined on coarse grids, according to finer levels in the hierarchy of splines. This truncation not only decreases the overlapping of supports related to basis functions arising from different hierarchical levels, but it also improves the numerical properties of the corresponding hierarchical basis -which is denoted as truncated hierarchical B-spline (THB-spline) basis. Several computed examples will illustrate the adaptive approximation behavior obtained by using a refinement algorithm based on THB-splines.
Adaptive local refinement is one of the key issues in Isogeometric Analysis. In this article we present an adaptive local refinement technique for Isogeometric Analysis based on extensions of hierarchical B-splines. We investigate the theoretical properties of the spline space to ensure fundamental properties like linear independence and partition of unity. Furthermore, we use concepts well-established in finite element analysis to fully integrate hierarchical spline spaces into the isogeometric setting. This also allows us to access a posteriori error estimation techniques. Numerical results for several different examples are given and they turn out to be very promising.
Isogeometric analysis based on NURBS (Non-Uniform Rational B-Splines) as basis functions preserves the exact geometry but suffers from the drawback of a rectangular grid of control points in the parameter space, which renders a purely local refinement impossible. This paper demonstrates how this difficulty can be overcome by using T-splines instead. T-splines allow the introduction of so-called T-junctions, which are related to hanging nodes in the standard FEM. Obeying a few straightforward rules, rectangular patches in the parameter space of the T-splines can be subdivided and thus a local refinement becomes feasible while still preserving the exact geometry. Furthermore, it is shown how state-of-the-art a posteriori error estimation techniques can be combined with refinement by T-Splines. Numerical examples underline the potential of isogeometric analysis with T-splines and give hints for further developments.
The problem of constructing a normalized hierarchical basis for adaptively refined spline spaces is addressed. Multilevel representations are defined in terms of a hierarchy of basis functions, reflecting different levels of refinement. When the hierarchical model is constructed by considering an underlying sequence of bases Γℓ=0,…,N−1 with properties analogous to classical tensor-product B-splines, we can define a set of locally supported basis functions that form a partition of unity and possess the property of coefficient preservation, i.e., they preserve the coefficients of functions represented with respect to one of the bases Γℓ. Our construction relies on a certain truncation procedure, which eliminates the contributions of functions from finer levels in the hierarchy to coarser level ones. Consequently, the support of the original basis functions defined on coarse grids is possibly reduced according to finer levels in the hierarchy. This truncation mechanism not only decreases the overlapping of basis supports, but it also guarantees strong stability of the construction. In addition to presenting the theory for the general framework, we apply it to hierarchically refined tensor-product spline spaces, under certain reasonable assumptions on the given knot configuration
Due to its minimal twist, the rotation minimizing frame (RMF) is widely used in computer graphics, including sweep or blending surface modeling, motion design and control in computer animation and robotics, streamline visualization, and tool path planning in CAD/CAM. We present a novel simple and efficient method for accurate and stable computation of RMF of a curve in 3D. This method, called the double reflection method, uses two reflections to compute each frame from its preceding one to yield a sequence of frames to approximate an exact RMF. The double reflection method has the fourth order global approximation error, thus it is much more accurate than the two currently prevailing methods with the second order approximation error-the projection method by Klok and the rotation method by Bloomenthal, while all these methods have nearly the same per-frame computational cost. Furthermore, the double reflection method is much simpler and faster than using the standard fourth order Runge-Kutta method to integrate the defining ODE of the RMF, though they have the same accuracy. We also investigate further properties and extensions of the double reflection method, and discuss the variational principles in design moving frames with boundary conditions, based on RMF.
Highlights► A new IsogEometric Tearing and Interconnecting (IETI) method is proposed. ► Exact geometry representation of IGA and solver design of FETI methods are combined. ► Coupling conditions for interfaces, including hanging knots, are discussed. ► Efficient preconditioning techniques for the interface problem are presented. ► Some local refinement options for IGA are discussed.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.