This study explored the binding patterns of the wild type and B.1.618 variant using which revealed that the B.1.618 variant possess a stronger binding affinity for the host ACE2 and escape the neutralizing antibodies.
The citrus mealybug, Planococcus citri, is an important plant pest with a very broad plant host range. P. citri is a phloem feeder and loss of plant vigor and stunting are characteristic symptoms induced on a range of host plants, but P. citri also reduces fruit quality and causes fruit drop leading to significant yield reductions. Better strategies for managing this pest are greatly needed. RNA interference (RNAi) is an emerging tool for functional genomics studies and is being investigated as a practical tool for highly targeted insect control. Here we investigated whether RNAi effects can be induced in P. citri and whether candidate mRNAs could be identified as possible targets for RNAi-based P. citri control. RNAi effects were induced in P. citri, as demonstrated by specific target reductions of P. citri actin, chitin synthase 1 and V-ATPase mRNAs after injection of the corresponding specific double-stranded RNA inducers. We also used recombinant Tobacco mosaic virus (TMV) to express these RNAi effectors in Nicotiana benthamiana plants. We found that P. citri showed lower fecundity and pronounced death of crawlers after feeding on recombinant TMV-infected plants. Taken together, our data show that actin, chitin synthase 1 and V-ATPase mRNAs are potential targets for RNAi against P. citri, and that recombinant TMV is an effective tool for evaluating candidate RNAi effectors in plants.
RNA interference (RNAi) of vital insect genes is a potential tool for targeted pest control. However, selection of the right target genes is a challenge because the RNAi efficacy is known to vary among insect species. Cotton mealybug, Phenacoccus solenopsis, is a phloem-feeding economically important crop pest. We evaluated the RNAi of 2 vital genes, Bursicon (PsBur) and V-ATPase (PsV-ATPase) as potential targets in P. solenopsis for its control. PCR fragments of PsBur and PsV-ATPase were amplified using cDNA synthesized from the total RNA. The PCR amplicons were cloned into Potato virus X (PVX) to develop recombinant PVX for the inoculation of Nicotiana tabacum plants for bioassays with healthy P. solenopsis. Reverse-transcription-polymerase chain reaction (RT-PCR) was used to validate the expression of transgenes in the recombinant-PVX-inoculated plants (treated), and suppression of the target genes in the mealybugs exposed to them. The RT-PCR confirmed the expression of transgenes in the treated plants. Mealybug individuals on treated plants either died or showed physical deformities. Further, the population of mealybug was significantly reduced by feeding on N. tabacum expressing RNAi triggers against PsBur and PsV-ATPase. The results conclude that RNAi is activated in P. solenopsis by feeding on N. tabacum expressing RNAi triggering elements of PsBur and PsV-ATPase genes through recombinant PVX vector. Further, V-ATPase and Bursicon genes are potential targets for RNAi-mediated control of P. solenopsis.
The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama vectors pathogens that cause huanglongbing (HLB) or citrus greening devastating and economically important disease present in most citrus growing regions. Young citrus shoots are required for psyllid reproduction and development. During winter citrus trees produce little or no new growth. Overwintering adults reproduce in spring on newly emerging shoots also attractive to other pests and beneficial insects. Botanicals and relatively selective insecticides could help to conserve beneficial insects and reduce pest resistance to insecticides. Sprays of Azadirachtin (Neem), Tropane (Datura), Spirotetramat, Spinetoram, and broad-spectrum Imidacloprid were evaluated to control ACP in spring and summer on 10-year-old "Kinow" Citrus reticulata Blanco trees producing new growth. Psyllid populations were high averaging 5-9 nymphs or adults per sample before treatment application. Nymphs or adults were significantly reduced to 0.5-1.5 per sample in all treatments for 3 weeks, average 61%-83% reduction. No significant reduction in ladybeetles Adalia bipunctata, Aneglei scardoni, Cheilomenes sexmaculata, and Coccinella septempunctata was observed. Syrphids, spiders and green lacewings were reduced in treated trees except with Tropane. Studies are warranted to assess impact of these predators on ACP and interaction with insecticides. Observed reduction in ACP populations may not be enough considering its reproductive potential and role in the spread of HLB. Follow-up sprays may be required to achieve additional suppression using rotations of different insecticides.
chitin synthase 1 is a potential RNAi target in P. solenopsis and the recombinant PVX can be used as a tool to evaluate candidate RNAi triggering elements in plants.
The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is an economically important pest of citrus because it serves as a vector of the causal pathogens of huanglongbing (HLB) also known as citrus greening disease. The increased use of insecticides for control of D. citri negatively impacts several natural enemies including some effective ladybeetle species which are not available commercially. The two-spotted ladybeetle, Adalia bipunctata (Coleoptera: Coccinellidae) is found in some crop and forest ecosystems of Asia, Europe and North America and available commercially. It is known to attack aphids and mealybugs but there are no published records of feeding on psyllids. We evaluated suitability and preference of A. bipunctata for nymphs of D. citri compared to corn leaf aphid Rhopalosiphum maidis (Hemiptera: Aphididae) a global pest of cereal crops and prey for many predaceous insects. We also compared development and reproduction of A. bipunctata on these two species with frozen eggs of the Mediterranean flour moth Ephestia kuehniella (Lepidoptera: Pyralidae) at 25°C. Initially, more D. citri than R. maidis nymphs were consumed in the no-choice tests although final consumption by larva and adult of A. bipunctata did not differ in the choice and no-choice tests. Larval development was prolonged by one day on D. citri compared to R. maidis nymphs but did not differ between either of these diets and E. kuehniella. Larval survival to adult averaged 93–100% and was not impacted by diet. Adult life span did not differ between diets although those on D. citri and R. maidis nymphs weighed less and produced fewer but more fertile eggs than on E. kuehniella eggs. Significant reduction of D. citri nymphs averaging 54% was observed in colonies caged with adult A. bipunctata on field planted citrus. R° (net reproductive rate) was least for beetles fed R. maidis, but otherwise there were no significant differences in demographic parameters. Successful feeding, development and reproductive performance of A. bipunctata suggest its usefulness as biological control agent of D. citri as well as aphid species exemplified by R. maidis.
Tomato production in Pakistan faces significant problems of low yields due to various biotic and abiotic stresses primarily because of a narrow genetic base of the cultivars being used. Therefore, Introduction and evaluation of the exotic tomato germplasm has become necessary to acquire elite material to develop future breeding programs. To this end, the present study was conducted for the phenotypic characterization of twenty exotic tomato genotypes along with two locally grown cultivars in semi-arid subtropical climate. Data were collected for morphological, fruit quality and fruit yield traits. A significant (p<0.05) phenotypic variation was observed for all the studied traits. Maximum yield was obtained from “Rober” i.e., 1508.31 g per plant. The maximum shelf life was observed in the Cromco, with the least weight loss (2.45%) and loss in the firmness of fruit (22.61%) in 4 days. Correlation analyses revealed a strong genetic association among morphological and yield related traits. High estimates of the heritability (ranged from 79.77% to 95.01% for different traits), along with a high genetic advance (up to 34%) showed the potential usefulness of these traits and genotypes to develop breeding programs to improve the tomato yield and fruit quality.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.