CO2 laser resurfacing of facial rhytides and acne scars can be a very safe procedure by an experienced laser operator. However, careful patient selection, thorough patient instruction, and proper aesthetic analysis of treatment sites must be followed to insure the most favorable outcomes with CO2 laser resurfacing.
This study suggests that dynamic cooling can dramatically diminish pain during PWS treatment with the 585-nm PDL without reducing treatment efficacy. The absence of epidermal damage in most patients suggests that precooling with the DCD may allow the use of higher laser fluences to expedite clearance without inducing epidermal change. Dynamic cooling has potential use with other lasers and different lesions where discomfort and epidermal effects limit therapy.
According to the reported worldwide adverse events data, hypersensitivity to nonanimal hyaluronic acid gel is the major adverse event and is most likely secondary to impurities of bacterial fermentation. According to data from 2000, the incidence of hypersensitivity appears to be declining after the introduction of a more purified hyaluronic acid raw material.
Three-dimensional In-vivo optical skin imaging provided a rapid and quantitative assessment of surface topography and facial fine lines following multiple treatment sessions with a 1064-nm QS Nd:YAG laser, correlating with clinical and subjective responses. This imaging technique provided objective verification and technical understanding of nonablative laser technology. Wrinkle depth and skin roughness decreased at the three and six-month follow-up evaluations by 3D In-vivo assessment, indicating ongoing dermal collagen remodeling after the laser treatment protocol. Future applications may include comparison of nonablative laser technology, optimization of treatment regimens, and objective evaluation of other aesthetic procedures performed by dermatologists.
The pathophysiology of acne vulgaris depends on active sebaceous glands, implying that selective destruction of sebaceous glands could be an effective treatment. We hypothesized that light-absorbing microparticles could be delivered into sebaceous glands, enabling local injury by optical pulses. A suspension of topically applied gold-coated silica microparticles exhibiting plasmon resonance with strong absorption at 800 nm was delivered into human pre-auricular and swine sebaceous glands in vivo, using mechanical vibration. After exposure to 10–50 J cm−2, 30 milliseconds, 800 nm diode laser pulses, microscopy revealed preferential thermal injury to sebaceous follicles and glands, consistent with predictions from a computational model. Inflammation was mild; gold particles were not retained in swine skin 1 month after treatment, and uptake in other organs was negligible. Two independent prospective randomized controlled clinical trials were performed for treatment of moderate-to-severe facial acne, using unblinded and blinded assessments of disease severity. Each trial showed clinically and statistically significant improvement of inflammatory acne following three treatments given 1–2 weeks apart. In Trial 2, inflammatory lesions were significantly reduced at 12 weeks (P=0.015) and 16 weeks (P=0.04) compared with sham treatments. Optical microparticles enable selective photothermolysis of sebaceous glands. This appears to be a well-tolerated, effective treatment for acne vulgaris.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.