Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO 2 RR). Using in situ Ambient Pressure Xray Photoelectron Spectroscopy (APXPS) and quasi in situ Electron Energy Loss Spectroscopy (EELS) in a Transmission Electron Microscope (TEM), we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts, but no residual copper oxide. Based on these findings in combination with Density Functional Theory (DFT) simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stable under the strongly reducing conditions found in CO 2 RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multi-carbon compounds such as ethylene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.