Neural circuits of the basal ganglia are critical for motor planning and action selection1-3. Two parallel basal ganglia pathways have been described4, which are proposed to exert opposing influences on motor function5-7. According to this classical model, activation of the direct pathway facilitates movement and activation of the indirect pathway inhibits movement. However, more recent anatomical and functional evidence has called into question the validity of this hypothesis8-10. Because this model has never been empirically tested, the specific function of these circuits in behaving animals remains unknown. Here, we directly activated basal ganglia circuitry in vivo, using optogenetic control11-14 of direct- and indirect-pathway medium spiny projection neurons (MSNs), achieved through Cre-dependent viral expression of channelrhodopsin-2 in the striatum of D1-Cre and D2-Cre BAC transgenic mice. Bilateral excitation of indirect-pathway MSNs elicited a parkinsonian state, distinguished by increased freezing, bradykinesia, and decreased locomotor initiations. In contrast, activation of direct-pathway MSNs reduced freezing and increased locomotion. In a mouse model of Parkinson's disease, direct pathway activation completely rescued deficits in freezing, bradykinesia, and locomotor initiation. Taken together, our findings establish a critical role for basal ganglia circuitry in the bidirectional regulation of motor behavior and indicate that modulation of direct pathway circuitry may represent an effective therapeutic strategy for ameliorating parkinsonian motor deficits.
Neural network dysfunction may play an important role in Alzheimer's disease (AD). Neuronal circuits vulnerable to AD are also affected in human amyloid precursor protein (hAPP) transgenic mice. hAPP mice with high levels of amyloid-beta peptides in the brain develop AD-like abnormalities, including cognitive deficits and depletions of calcium-related proteins in the dentate gyrus, a region critically involved in learning and memory. Here, we report that hAPP mice have spontaneous nonconvulsive seizure activity in cortical and hippocampal networks, which is associated with GABAergic sprouting, enhanced synaptic inhibition, and synaptic plasticity deficits in the dentate gyrus. Many Abeta-induced neuronal alterations could be simulated in nontransgenic mice by excitotoxin challenge and prevented in hAPP mice by blocking overexcitation. Aberrant increases in network excitability and compensatory inhibitory mechanisms in the hippocampus may contribute to Abeta-induced neurological deficits in hAPP mice and, possibly, also in humans with AD.
SUMMARY Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. To identify such mechanisms, we studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell–predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.