Nitric oxide (NO) inhibits proliferation of subventricular zone (SVZ) neural precursor cells in adult mice in vivo under physiological conditions. The mechanisms underlying this NO effect have now been investigated using SVZ-derived neural stem cells, which generate neurospheres in vitro when stimulated by epidermal growth factor (EGF). In these cultures, NO donors decreased the number of newly formed neurospheres as well as their size, which indicates that NO was acting on the neurosphere-forming neural stem cells and the daughter neural progenitors. The effect of NO was cytostatic, not proapoptotic, and did not involve cGMP synthesis. Neurosphere cells expressed the neuronal and endothelial isoforms of NO synthase (NOS) and produced NO in culture. Inhibition of NOS activity by N -nitro-L-arginine methylester (L-NAME) promoted neurosphere formation and growth, thus revealing an autocrine/paracrine action of NO on the neural precursor cells. Both exogenous and endogenous NO impaired the EGF-induced activation of the EGF receptor (EGFR) tyrosine kinase and prevented the EGF-induced Akt phosphorylation in neurosphere cells. Inhibition of the phosphoinositide-3-kinase (PI3-K)/Akt pathway by LY294002 significantly reduced the number of newly formed neurospheres, which indicates that this is an essential pathway for neural stem cell self-renewal. Chronic administration of L-NAME to adult mice enhanced phosphoAkt staining in the SVZ and reduced nuclear p27 Kip1 in the SVZ and olfactory bulb. The inhibition of EGFR and PI3-K pathway by NO explains, at least in part, its antimitotic effect on neurosphere cells and may be a mechanism involved in the physiological role of NO as a negative regulator of SVZ neurogenesis in adult mice. STEM CELLS 2007;25: 88 -97
Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. The RET proto-oncogene is the major gene for HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. Many other genes have been described to be associated with the pathology, as NRG1 gene (8p12), encoding neuregulin 1, which is implicated in the development of the enteric nervous system (ENS), and seems to contribute by both common and rare variants. Here we present the results of a comprehensive analysis of the NRG1 gene in the context of the disease in a series of 207 Spanish HSCR patients, by both mutational screening of its coding sequence and evaluation of 3 common tag SNPs as low penetrance susceptibility factors, finding some potentially damaging variants which we have functionally characterized. All of them were found to be associated with a significant reduction of the normal NRG1 protein levels. The fact that those mutations analyzed alter NRG1 protein would suggest that they would be related with HSCR disease not only in Chinese but also in a Caucasian population, which reinforces the implication of NRG1 gene in this pathology.
Hirschsprung disease (HSCR, OMIM 142623) is a neurocristopathy caused by a failure of the enteric nervous system (ENS) progenitors derived from neural crest cells (NCCs), to migrate, proliferate, differentiate or survive to and within the gastrointestinal tract, resulting in aganglionosis in the distal colon. The formation of the ENS is a complex process, which is regulated by a large range of molecules and signalling pathways involving both the NCCs and the intestinal environment. This tightly regulated process needs correct regulation of the expression of ENS specific genes. Alterations in the expression of these genes can have dramatic consequences. Several mechanisms that control the expression of genes have been described, such as DNA modification (epigenetic mechanisms), regulation of transcription (transcription factor, enhancers, repressors and silencers), post-transcriptional regulation (3'UTR and miRNAs) and regulation of translation. In this review, we focus on the epigenetic DNA modifications that have been described so far in the context of the ENS development. Moreover we describe the changes that are found in relation to the onset of HSCR.
Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic colon segment and functional intestinal obstruction. The RET proto-oncogene is the major gene associated to HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. In addition, many other genes have been described to be associated with this pathology, including the semaphorins class III genes SEMA3A (7p12.1) and SEMA3D (7q21.11) through SNP array analyses and by next-generation sequencing technologies. Semaphorins are guidance cues for developing neurons implicated in the axonal projections and in the determination of the migratory pathway for neural-crest derived neural precursors during enteric nervous system development. In addition, it has been described that increased SEMA3A expression may be a risk factor for HSCR through the upregulation of the gene in the aganglionic smooth muscle layer of the colon in HSCR patients. Here we present the results of a comprehensive analysis of SEMA3A and SEMA3D in a series of 200 Spanish HSCR patients by the mutational screening of its coding sequence, which has led to find a number of potentially deleterious variants. RET mutations have been also detected in some of those patients carrying SEMAs variants. We have evaluated the A131T-SEMA3A, S598G-SEMA3A and E198K-SEMA3D mutations using colon tissue sections of these patients by immunohistochemistry. All mutants presented increased protein expression in smooth muscle layer of ganglionic segments. Moreover, A131T-SEMA3A also maintained higher protein levels in the aganglionic muscle layers. These findings strongly suggest that these mutants have a pathogenic effect on the disease. Furthermore, because of their coexistence with RET mutations, our data substantiate the additive genetic model proposed for this rare disorder and further support the association of SEMAs genes with HSCR.
Hirschsprung disease (HSCR) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract. The major susceptibility gene for the disease is the RET proto-oncogene, which encodes a receptor tyrosine kinase activated by the glial cell-derived neurotrophic factor (GDNF) family ligands. We analyzed the coding sequence of GDNF, NTRN, and, for the first time, ARTN and PSPN in HSCR patients and detected several novel variants potentially involved in the pathogenesis of HSCR. In vitro functional analysis revealed that the variant R91C in PSPN would avoid the correct expression and secretion of the mature protein. Moreover, this study also highlighted the role of both this variant and F127L in NRTN in altering RET activation by a significant reduction in phosphorylation. To support the role of PSPN R91C in HSCR phenotype, enteric nervous system (ENS) progenitors were isolated from human postnatal gut tissues and expression of GFRα4, the main co-receptor for PSPN, was demonstrated. This suggests that not only GDNF and NRTN but also PSPN might promote survival of precursor cells during ENS development. In summary, we report for the first time the association of PSPN gene with HSCR and confirm the involvement of NRTN in the disease, with the identification of novel variants in those genes. Our results suggest that the biological consequence of the mutations NTRN F127L and PSPN R91C would be a reduction in the activation of RET-dependent signaling pathways, leading to a defect in the proliferation, migration, and/or differentiation process of neural crest cells within the developing gut and thus to the typical aganglionosis of the HSCR phenotype.
Hirschsprung disease (HSCR; OMIM 142623) is a developmental disorder characterized by aganglionosis along variable lengths of the distal gastrointestinal tract, which results in intestinal obstruction. Interactions among known HSCR genes and/or unknown disease susceptibility loci lead to variable severity of phenotype. Neither linkage nor genome-wide association studies have efficiently contributed to completely dissect the genetic pathways underlying this complex genetic disorder. We have performed whole exome sequencing of 16 HSCR patients from 8 unrelated families with SOLID platform. Variants shared by affected relatives were validated by Sanger sequencing. We searched for genes recurrently mutated across families. Only variations in the FAT3 gene were significantly enriched in five families. Within-family analysis identified compound heterozygotes for AHNAK and several genes (N = 23) with heterozygous variants that co-segregated with the phenotype. Network and pathway analyses facilitated the discovery of polygenic inheritance involving FAT3, HSCR known genes and their gene partners. Altogether, our approach has facilitated the detection of more than one damaging variant in biologically plausible genes that could jointly contribute to the phenotype. Our data may contribute to the understanding of the complex interactions that occur during enteric nervous system development and the etiopathology of familial HSCR.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers